

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

CUBE-TYPE ALGEBRAIC ATTACKS ON WIRELESS
ENCRYPTION PROTOCOLS

by

Nikolaos Petrakos

September 2009

 Thesis Co- Advisors: George Dinolt
 James Bret Michael
 Pantelimon Stanica

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
Cube-type Algebraic Attacks on Wireless Encryption Protocols

6. AUTHOR(S) Nikolaos Petrakos

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In this study, we investigated an algebraic-type attack, known as the cube attack, against wireless
networks. We implemented the cube attack in a wireless system, namely Bluetooth. We formally modeled
the encryption function of E0 Bluetooth key generator and automated the process of the cube attack on E0
of the factorization process (preprocessing phase). In this phase, an attacker finds as many maxterms (a
term of the encryption function such that its co-factor is a linear nonconstant polynomial) as possible. In the
actual attacking phase, the attacker solves the system of linear equations through a chosen plaintext attack
and reveals useful information about the cryptosystem. The number of operations needed in the
computational process is 21.12 and is considerably less than that of similar algebraic types of attacks, but it
is limited to the output of the LFSRs at any clock cycle. The results of our analysis indicate that if an
attacker is an unauthorized participant of the security protocol, then by manipulating some of the output
bits of the LFSRs of two arbitrary clock cycles and intercepting the output bits of the entire machine the
attacker then succeeds in finding the output bits of the LFSRs at any clock tick.

15. NUMBER OF
PAGES

99

14. SUBJECT TERMS
Wireless Security, Cryptanalysis, Boolean Functions, Algebraic
Attacks, Correlation Attacks, Cube Attacks, Bluetooth, Security Protocols.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CUBE-TYPE ALGEBRAIC ATTACKS ON WIRELESS ENCRYPTION
PROTOCOLS

Nikolaos Petrakos

Lieutenant, Hellenic Navy,
B.A., Hellenic Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF COMPUTER SCIENCE
and

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: Nikolaos Petrakos

Approved by: George Dinolt
 Thesis Co-Advisor

 James Bret Michael
 Thesis Co-Advisor

 Pantelimon Stanica
 Thesis Co-Advisor

 Peter J. Denning
 Chairman, Department of Computer Science

 Carlos F. Borges
 Chairman, Department of Applied Mathematics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In this study, we investigated an algebraic-type attack, known as the cube

attack, against wireless networks. We implemented the cube attack in a wireless

system, namely Bluetooth. We formally modeled the encryption function of E0

Bluetooth key generator and automated the process of the cube attack on E0 of

the factorization process (preprocessing phase). In this phase, an attacker finds

as many maxterms (a term of the encryption function such that its co-factor is a

linear nonconstant polynomial) as possible. In the actual attacking phase, the

attacker solves the system of linear equations through a chosen plaintext attack

and reveals useful information about the cryptosystem. The number of operations

needed in the computational process is 21.12 and is considerably less than that of

similar algebraic types of attacks, but it is limited to the output of the LFSRs at

any clock cycle. The results of our analysis indicate that if an attacker is an

unauthorized participant of the security protocol, then by manipulating some of

the output bits of the LFSRs of two arbitrary clock cycles and intercepting the

output bits of the entire machine the attacker then succeeds in finding the output

bits of the LFSRs at any clock tick.

 vi

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. MOTIVATION... 1
Β. THESIS OUTLINE.. 4
C. THE PROBLEM ... 4
D. ACCOMPLISHMENTS OF THIS STUDY... 4

II. BACKGROUND.. 7
A. COMPUTER SCIENCE.. 7

1. Security Protocol ... 7
2. Wireless Security... 7
3. Cryptosystem... 7
4. Wireless Threats .. 8

B. MATHEMATICAL THEORY... 10
1. Vector Space.. 10
2. Vector Space and Correspondence of the Finite Field....... 12
3. Boolean Function .. 14
4. Hamming Weight and Distance .. 16
5. Walsh Transform ... 17

III. CORRELATION AND ALGEBRAIC ATTACKS... 19
A. INTRODUCTION.. 19
B. PROPERTIES OF BOOLEAN FUNCTIONS...................................... 19

1. Balance of Boolean Functions ... 20
2. Nonlinearity .. 20
3. Correlation and Algebraic Immunity 20

C. CORRELATION ATTACKS ... 21
D. ALGEBRAIC ATTACKS .. 24
E. CONCLUSION ... 26

IV. CUBE ATTACK .. 27
A. INTRODUCTION.. 27
B. BACKGROUND/KEY OBSERVATIONS ON THE CUBE ATTACK.. 27
C. PREPROCESSING AND ONLINE PHASE.. 34

1. Preprocessing Phase .. 34
2. Online Phase .. 35

D. EXTENSIONS OF THE CUBE ATTACK ... 35
1. Cube Attack with Annihilators.. 36
2. Cube Attack on a Vectorial Filter Function with Low

Degree .. 36

V. BLUETOOTH KEY STREAM GENERATOR E0 .. 39
A. INTRODUCTION.. 39
B. BLUETOOTH’S ENCRYPTION APPROACH.................................... 39
C. STREAM CIPHER E0 .. 41

 vii

D. MODELING ENCRYPTION FUNCTION OF E0................................. 45

VI. AUTOMATED TOOL FOR MODELING CUBE ATTACK............................. 51
A. OVERVIEW .. 51
B. APPROACH—BASIC ASSUMPTIONS... 51

1. Modeling Environment .. 52
2. Basic Assumptions ... 53

C. RESULTS... 56
1. Preprocessing Phase .. 56
2. Online Phase .. 58

D. ANALYSIS OF THE RESULTS ... 59
E. COMPLEXITY .. 60

1. Preprocessing Phase .. 60
2. Online Phase .. 61

VII. CONCLUSION.. 63
A. CONTRIBUTION.. 63
B. FUTURE DIRECTIONS.. 64

APPENDIX A. ENCRYPTION FUNCTION OF E0 IN FULL EXPANSION 65

APPENDIX B. MAPLE 12 .. 67

APPENDIX C. PROGRAM OUTPUT.. 71

APPENDIX D. GLOSSARY OF BLUETOOTH KEY STREAM GENERATOR E0 . 75

LIST OF REFERENCES.. 77

INITIAL DISTRIBUTION LIST ... 81

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Square of Two Dimensions .. 31
Figure 2. Cube of Three Dimensions... 31
Figure 3. Encryption Algorithm E3 (After [28, p. 953]) 40
Figure 4. Functional Description of the Encryption Procedure (After [28 p.

937]) ... 41
Figure 5. Encryption Procedure (After [39]) ... 42

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Correspondence between Finite Fields and Vector Spaces 13
Table 2. Truth Table of f ... 15
Table 3. Formal sum of known variables.. 30
Table 4. Primitive Feedback Polynomials of E0 (From [28, p.938]).................. 43
Table 5. Mappings of 1T and 2T ... 44

Table 6. Maxterms and Superpolys of the E0 Keystream Generator 57

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

In this study, we investigated an algebraic-type attack, known as the cube

attack, against wireless networks. We implemented the cube attack in a wireless

system, namely Bluetooth. We formally modeled the encryption function of the

E0 Bluetooth key generator and automated the process of the cube attack on E0

of the factorization process (preprocessing phase). In this phase, an attacker

finds as many maxterms (a term of the encryption function such that its co-factor

is a linear nonconstant polynomial) as possible. In the actual attacking phase, the

attacker solves the system of linear equations through a chosen plaintext attack

and reveals useful information about the cryptosystem. The number of operations

needed in the computational process is 21.12 and is considerably less than that of

similar algebraic types of attacks, but it is limited to the output of the LFSRs at

any clock cycle. The main contribution of this thesis is that if the attacker is an

unauthorized participant of the security protocol, then by manipulating some of

the output bits of the LFSRs of two arbitrary clock cycles and intercepting the

output bits of the entire machine the attacker then succeeds in finding the output

bits of the LFSRs at any clock tick. The most important question that needs to be

answered next is how one can recover the encryption key of E0 after knowing the

output bits of every LFSR at any clock that this study provides.

Building on these results, the next stage of the research is to validate our

integration of the cube-type attack into the Bluetooth encryption protocol. As

demonstrated in this and other research we cited in this thesis, one needs to

understand and formally evaluate the strength of a given cryptosystem, be able

to evaluate its implementation to ensure that there are no flaws at that stage. The

cryptosystem and the protocol it uses may be good but if poorly implemented will

most likely be untrustworthy.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my thesis advisors Dr.

Pantelimon Stanica, Dr. George Dinolt, and Dr. Bret James Michael for their

invaluable advice, wisdom, time and effort plentifully devoted to me for this

thesis. I would like also to thank Dr. David Canright for sharing with me his

expertise in programming in the Maple environment. I would like further to thank

all the professors of the Naval Postgraduate School who devoted time and effort

to teach me with all their valuable skills and academic knowledge.

I want to thank whole-heartedly my wife Maria and my son Ioannis-

Stephanos for all their love, patience, understanding, and support they have

always given to me.

I would like to relay my sincere appreciation to the Hellenic Navy General

Staff for affording me the opportunity to attend the Naval Postgraduate School

and pursue a dual degree.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

Nowadays, there is great interest from the United States Department of

Defense to move from wired communication systems to wireless systems. How

to secure wireless cryptosystems, which are known to have suffered malicious

attacks, is a question this thesis is attempting to answer. Sun-Tzu stated (400–

320 BC, translated Giles, 1910) “If you know the enemy and know yourself, you

need not fear the result of a hundred battles.” As in that saying, there is a need to

see and understand the mathematical theory hidden in modern types of attacks,

and know how effective they are compared to the traditional exhaustive key

searches in wireless security protocols (e.g., Bluetooth, Wi-Fi, Wi-Max).

Bluetooth is a well-established wireless communications standard (IEEE

802.15.1) between different devices (e.g., personal computers, laptops, mobile

phones) that operates over a short range and at low power. For efficiency

reasons, such as speed, size and power consumption, the system uses a stream

cipher encryption (E0) instead of the widely-used block ciphers. Four linear

feedback shift registers1 (LFSRs) are used in the algorithm, and a nonlinear

Boolean function combines their output. The plaintext is then combined with the

output key stream using an exclusive OR (XOR) producing the ciphertext. Wired

Equivalency Privacy (WEP) IEEE 802.11 is another security protocol for Wi-Fi

networks. It provides authentication and encryption. The key component of this

protocol is the commonly used stream cipher RC4. IEEE 802.11, which has

questionable functionality due to the wireless packet network structure, provides

relatively weak encryption and a single-way authentication, and has no key-

distribution mechanisms. IEEE 802.11i updated the previous protocol and

1 In digital circuits, a shift register is a type of sequential logic circuit mainly for storage of

digital data, set up in a linear fashion, which has its inputs connected to the outputs in such a way
that the data shifts down the line when the circuit activates. A linear feedback shift register is a
shift register whose input bit is the output of a linear function of two or more of its previous states
(from [23], p.19).

 2

underwent final ratification, providing much stronger forms of encryption, an

extensible set of authentication mechanisms, and key distribution capabilities. It

includes an Advanced Encryption Standard (AES) - based encryption scheme.

World Interoperability for Microwave Access (Wi-Max) is a family of IEEE 802.16

standards that aims to deliver wireless data to a large number of users over a

wide area at rates that rival those of cable modems. There are two schemes for

data encryption supported in the 802.16 standard, the Advanced Encryption

Standard (AES) and Triple Data Encryption Standard (3DES). Both of these

schemes are block ciphers that operate on one block or chunk of data at a time,

whereas stream ciphers can act on a single bit. AES handles a 128-bit block of

data at a time, and has been shown to be very fast and easy to implement.

This thesis will investigate from a theoretical perspective the effectiveness

of several promising attacks against linear shift feedback registers (LSFRs)-

based ciphers, precisely we will look at correlation, algebraic, and cube attacks

implemented in Bluetooth encryption (128-bit key size).

Correlation attacks deal with distinguishing and recovering keys against

mainly stream ciphers. That means that there is a statistically biased relation

between the produced keystream and the output of certain LFSR sequences.

Using the notion of correlation, there is a direct relation between the output state

of an individual LFSR in the keystream generator and the output of the Boolean

function that combines the output state of all LFSRs. Therefore, partial

knowledge of the keystream (derived from the partial knowledge of the plaintext)

is needed. In 2004, Lu and Vaudenay used a correlation attack and implemented

it on an E0 Bluetooth keystream generator by applying a novel maximum

decoding algorithm based on the Walsh transform (a feature of the Boolean

functions), and succeeded in having key recovery of 392 operations after

372 operations for precomputation [1]. One year later, Lu, Meier and Vaudenay

proposed the use of conditional correlation attacks. The term “conditional

correlation” describes the linear correlation of the inputs conditioned on a given

sort output pattern of a nonlinear function with small input size. Their attack

 3

implemented in output of the same key generator E0 of Bluetooth and disclosed

the encrypted key in 382 operations using the first 24 bits of
23.82 frames, thus

improving the previous results of two of them [2]. One can also use algebraic

attacks against LFSR-based stream ciphers. Algebraic attacks consist of

expressing the whole cipher as a large system of multivariate algebraic equations

that can be solved to recover the secret key. The unknowns in these equations

occasionally represent the bits of the secret key. A major parameter that

influences the complexity of such attacks is the degree of the underlying

algebraic system. When the transition is linear, any keystream bit can be

expressed as a function of degree deg()f in the initial state bits. However,

despite the high degree of the filtering Boolean function that is used in the

keystream generator, such an attack can be applied as soon as there are

relations of low degree between the output and the inputs of the Boolean

function. Armknecht proposed a scheme that solved the E0 cryptosystem in

54.512 operations [3].

Dinur and Shamir described a type of algebraic attack called the cube

attack [4]. The active assault on a cryptosystem requires the attacker to extract

useful information from the bit stream. By skillfully choosing some publicly

settable bits, the attacker may be able to replace the polynomial that represents

the encryption function by a system of linear equations. Shamir and Dinur used

this approach on the Trivium cipher and recovered the encryption key in 192 bit

operations, which is the best result in the literature so far. Zhang et al. extended

Shamir and Dinur’s approach to other polynomials f from where they could find

a lower degree polynomial g , so that the product fg also has a lower degree.

They applied this attack on the Toyocrypt cipher with re-synchronization,

breaking the stream cipher in a few milliseconds on an ordinary PC [5].

All of the above-mentioned attacks are based on the cryptographic

features of Boolean functions that have been an object of study in modern

cryptography for about the last thirty-five years.

 4

Β. THESIS OUTLINE

The thesis consists of seven chapters. In Chapter I, the author gives a

general outline of the work, describes the motivation for this research, and

defines the problem that will be investigated. In Chapter II, the author describes

the mathematical background necessary for the reader to understand the

material that follows, the tools the author will use (Boolean functions, security

protocol of E0, etc.), and the basic definitions of cryptosystems and wireless

security. In Chapter III, the author examines the correlation and algebraic attacks

and their theoretical background. In Chapter IV, the author details the cube

attack concept and, in Chapter V, he models the Bluetooth keystream generator

E0. In Chapter VI, the author details the tool he created in order to automate the

cube attack and analyzes the results. The author ends this thesis with the

conclusions reached from the research and provides future recommendations.

C. THE PROBLEM

In recent years, there has been great interest from the Department of

Defense on substituting ground-wired networks (LANs) with short-range

(Bluetooth) or medium-range (Wi-Fi) wireless networks. Several types of attacks

have been successful at defeating the cryptosystems used by IEEE 802.11 and

802.16 technologies, leading one to ask the question: how much trust should we

place in the wireless encryption protocols?

D. ACCOMPLISHMENTS OF THIS STUDY

We formally modeled the encryption function of E0 Bluetooth key

generator and automated the factorization process (preprocessing phase) of

cube attack on E0. We applied the cube-type attack and reduced the search

space for the output of the LFSRs of E0, a hard task since Bluetooth E0 uses a

more complex encryption algorithm than the ciphers implemented so far. The

main contribution of this thesis is that under the assumption that the attacker is

an unauthorized participant of the security protocol, then by manipulating some

of the output bits of the LFSRs of two arbitrary clock cycles and intercepting the

 5

output bits of the entire encryption machine the attacker then succeeds in

revealing the output bits of the LFSRs at any clock cycle.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. BACKGROUND

A. COMPUTER SCIENCE

1. Security Protocol

Definition 2.1: “A security protocol is a sequence of messages
between two or more parties in which encryption is used to provide
authentication or to distribute cryptographic keys for new
conversations.” [6]

The majority of the security protocols in computer networks are based on

cryptography, which is why they are also called cryptographic protocols. In order

to establish a secure communication there are a sequence of steps the

participating parties must perform. These steps include the transmission of a

message, possibly encrypted, participating names, cryptographic keys, random

numbers, timestamps, ciphertexts and concatenation of these components. A

security protocol aims to achieve certain goals upon its completion, like verifying

the authenticity of the sender, ensuring the integrity of the transmitted message,

protecting the confidentiality of the header and contents of the message, and

providing for nonrepudiation. A security protocol is said to be flawed if it fails to

achieve its claimed goals [7].

2. Wireless Security

Security is an important concern in wireless networks because the radio

frequency (RF) transmissions can be monitored by malicious people. A

cryptosystem is a system used to encrypt a plaintext into ciphertext and at the

other end to decrypt a ciphertext into plaintext. The cryptosystem is also used to

ensure the four main goals of information security: confidentiality, integrity,

authenticity and norepudiation.

3. Cryptosystem

Definition 2.2: “A cryptosystem is a five-tuple (, , , ,)P C K E D , where
the following conditions are satisfied:

 8

 1. P is a finite set of possible plaintexts.

 2. C is a finite set of possible ciphertexts.

 3. K is the keyspace, which is a finite set of possible keys.

 4. For each K (i.e., for each bit that belongs to the
keyspace), there is an encryption rule e  and a corresponding

decryption rule d D . Each :e P C and :d C P are functions

such that (())d e x x  for every plaintext element x P .” [8]

The main property of all the above is the fourth property, where if a

plaintext x is encrypted using an encryption key e , the resulting ciphertext will

be decrypted using a decryption key d , revealing the original plaintext x .

For our work, we choose 2
mP C   where m is the length of the plaintext

to be enciphered and 2 is the set of remainders when dividing integers by 2.

Thus, 2 has two elements {0,1} and is called the set of integers modulo 2.

2[]X is the set of polynomials whose coefficients are integers modulo 2.

4. Wireless Threats

In common terms, a hacker is a person who legally or illegally gains

access to a computer system to make changes to the system or to reveal

security flaws [9, p. 379].

We consider three types of hackers. The whitehat hacker is a person that

is hired from a company to find the flaws in a computer system. A blackhat

hacker is a person who illegally accesses a computer system. There are also

greyhat hackers, namely something in the middle, persons who access a

computer system without authorization to make changes mostly for publicity

purposes and to gain popularity [9, p. 393].

Some common types of attacks on wireless systems are discussed below

[10]. In traffic analysis or passive eavesdropping, an adversary intercepts the

traffic in a wireless local area network (WLAN). Active eavesdropping occurs

 9

when the adversary inserts a message into the network, and from the response

of the system derives useful information about the system such as response

time. There is also message deletion on a network, which implies full control of

the network by the attacker. Next is session hijacking, where the adversary might

hijack a valid session and put authentication between legitimate users in dispute.

There is also the man-in-the-middle attack, where the adversary must participate

in the communication between the target parties. Before this happens, the

adversary spoofs the authentication process of both parties and then breaks the

connection between the two parties. The adversary pretends that he is the

legitimate one of the two associated users.

The Diffie-Hellman algorithm is vulnerable to the man-in-the-middle-attack,

because no authentication occurs before the two parties exchange the secret

keys [11]. Finally, denial-of-service (DoS) attacks have as a goal to deny the

services that the target system provides. Denial-of-service (DoS) attacks may be

launched over the Internet to target routers, servers, and firewalls. This makes

them rapidly use all of their resources and unable to provide further services.

There are policies and enforcement mechanisms that can be put in place to

guard against such attacks, but consideration of these is outside the scope of this

thesis.

From a cryptanalysis point of view, the most common models of attack are

as follows:

1. Ciphertext-only attack: The adversary possesses a ciphertext,

possibly by intercepting traffic.

2. Known-plaintext attack: The adversary possesses a plaintext and

its corresponding ciphertext.

3. Chosen-plaintext attack: The adversary has access to the

encryption cipher and he can choose a plaintext and construct the corresponding

ciphertext, and he can repeat this process as many times as he likes.

 10

4. Chosen-ciphertext attack: The adversary has access to the

decryption cipher and he can choose a ciphertext and construct the

corresponding plaintext, and he can repeat this process as many times as he

likes.

Here, the goal of the adversary is to determine the secret key that has

been used by the cipher. Correlation, algebraic and cube attacks, the foundations

of our results, are detailed in the following chapters.

B. MATHEMATICAL THEORY

The attack we have developed is based on several mathematical

concepts. Below we provide a description of these. We assume that the reader

has some familiarity with the concepts from Abstract Algebra and Boolean

functions.

At a very high level, a Boolean function outputs a single bit result (0 or 1)

for each possible combination of values from many Boolean variables. The

algebraic environment of Boolean functions is a vector space (defined below) of

dimension n over the binary field. The Boolean output consists of the bit values

{0,1}, with “XOR” as addition and “AND” as multiplication.

1. Vector Space

A field is a set endowed with two operations, satisfying a plethora of

conditions. We will use mostly the binary field 2 whose addition and

multiplication operations are defined as follows:

0 0 0

0 1 1 0 1

1 1 0

0 0 0

1 0 0 1 0

1 1 1

 
   
 
 
   
 

 11

Definition 2.3: Let  be an algebraic field. A vector space over  (or  -

vector space) consists of an abelian (commutative) group V under addition

together with an operation of scalar multiplication of each element of V by

each element of  on the left, such that for all ,a band , V   the

following conditions are satisfied:

 .a V 

 () () .a b ab 

 () () ().a b a b    

 () () ().a a     

 1 . 

The elements of V are vectors and the elements of the algebraic field

F are scalars. When only one field  is under discussion, the reference to  is

dropped and instead refers to a vector space [12]. Specifically, let nV be the

vector space of dimension n over the two-element field 2 . For two vectors in nV ,

say 1(,...,)na a a and 1(,...,)nb b b , the scalar product is defined as

1 1 ... n na b a b a b    , where the multiplication and the addition  are over 2

(This operation should not be confused with the direct product of vector spaces).

The operation  on vectors is defined by 1 1(,...,)n na b a b a b  .

When one is dealing with the vector space 2
n

nV   (where 2 2 2 2...n       

represents the set of all n-tuples of 0’s and 1’s) then the following operations

apply:

 Addition

1 2 3 1 2 3 1 1 2 3 3(, , ,...,) (, , ,...,) (, , ,...,)n n n nv v v v w w w w v w v v w v w     

 Multiplication

 Scalar Multiplication

n-times

 12

1 2 3 1 2 3 1 1 2 2 3 3(, , ,...,) (, , ,...,) ...n n n nv v v v w w w w v w v w v w v w     

 Vector Intersection

1 2 3 1 2 3 1 1 2 2 3 3(, , ,...,) (, , ,...,) (, , ,...,)n n n nv v v v w w w w v w v w v w v w 

2. Vector Space and Correspondence of the Finite Field

In abstract algebra, a finite field is any field with a finite number of

elements. For every prime p and positive integer n there is exactly one finite field

(up to isomorphism) of order np . The field (2)nGF is usually referred as the

Galois field of order 2n [12, p. 300].

Definition 2.4: A polynomial is primitive if it is the minimal polynomial of a

primitive element of the finite extension field ()nGF p . In other words, a

polynomial ()P X , with coefficients in () /GF p p   , is a primitive

polynomial, if it has a root α in ()nGF p such that  22 30,1, , , ,...,
npa a a a


 is

the entire field ()nGF p and ()P X is the smallest degree polynomial

having α as root in ()nGF p .

Any finite field of dimension n over ()GF p can be constructed by taking a

primitive polynomial p which is of degree n (p is primitive and deg ()P X n).

For the Galois field GF(2) we have the correspondence 2(2)n nGF   :

 12
0 1 1

[]
(2) ...n n

n

X
GF a a X a X

P


    
 


, 2ia  .

Given such a representation of (2)nGF by a polynomial P, to every element

1
0 1 1... n

na a X a X 
   we associate the vector 0 1 1 2(, ,...,) n

n na a a V   .

This does not mean that both structures are the same; rather, it means that there

is a bijective correspondence between those two structures.

 13

Example 2.5:

Assume one is working in 3(2)GF , thus  33 2 1 12[]
(2) 0,1,...

X
GF a

P
  

 


.

One has to use a primitive polynomial of degree 3, say 3 1p x x   .

3(2)GF

3V

0 000

01 a 001

a 010

2a 100

3 1a a  (1) 011 010 001 

4 2a a a  (2) 110 100 010 

5 2 1a a a   111 100 010 001  

6 2 1a a  101 100 001 

7 1a  001

Table 1. Correspondence between Finite Fields and Vector Spaces

Observations:

(1) 3 31 0 1a a a a      since a is a primitive element.

(2) 4 3 2() (1)a a a a a a a     ; continue in that fashion up to the element where

there is repetition (7a).

 14

3. Boolean Function

Definition 2.6: A Boolean function f in n variables is a map from a vector

space nV of dimension n over 2F to the two-element field 2 . The (0,1)

sequence generated by the Boolean function f is defined by

0 1 2 1
((), (),..., ())nf v f v f v


 and is called the truth table of f , where

0 1 2 1
(0,..., 0,0), (0,..., 0,1),... (1,...,1,1),nv v v


   ordered lexicographical. The

(1,-1) sequence of f is defined as 0 1 2 1
()() ()((1) , (1) ,..., (1))nf vf v f v    .

Any function that is defined in a vector space over a finite field, in particular in

2 is in fact a polynomial [13]. The idea is that if one defines a function that takes

any vector into an output, then by taking the degree of the polynomial high

enough, one can find appropriate coefficients so that particular polynomial will

match the dataset.

“A Boolean function on nV can be expressed as a polynomial in

2 2
2 1 1 1[,...,] / (,...,)n n nx x x x x x  ; the algebraic normal form (ANF) is

1
1() n

n

aa
a n

a V

f x c x x


  , where 2ac  and 1(,...,).na a a Moreover, ()a
x a

c f x




where x a means that i ix a for all 1 i n  .The algebra of all Boolean functions

on nV will be called n ” [13, pp. 5–6].

The simplest Boolean functions are the constant functions 0 and 1.

Example 2.7:

Assume 3n  , thus working on 3V .

Let 3 2 1 2 3 1 2 3: : (, ,)f V f x x x x x x   be the Algebraic Normal Form (ANF) of a

Boolean function f.

 15

3V

(Lexicographical Order)

Labeling of values:

3 2 1x x x

f

000 0

001 0

010 0

011 1

100 1

101 1

110 1

111 0

Table 2. Truth Table of f

Thus, the Boolean function has the following truth table (Table 2): 00011110f  .

One can infer the ANF of f having the sequence of bits of that Boolean function

and vice versa.

Definition 2.8: An affine function ,a cl on nV is a function that takes the

form: , 1 1() ...a c n nl x a x c a x a x c       ,

where 1 2 2(, ,...,) ,n na a a a V c   . If 0c  , then ,0 ()a al l

is a linear function

[13, p. 6].

Definition 2.9: Let  be a set. If there are exactly n distinct elements in

 where n is a nonnegative integer, we say that  is a finite set and n is

the cardinality of . The cardinality of  is denoted by  [14].

Lemma 2.10: The number of all affine functions in n variables is 12n
nA  .

 16

Proof: By definition, an affine function depends on 1n  parameters

1 2, ,..., ,na a a c each of which taking values 0,1 . Therefore, the number of such

choices is 12n The set of all affine functions is a small class of Boolean

functions.

Additionally, one should note that the set of all linear functions nL has 2n
nL  ,

since c=0.

■

Lemma 2.11: The number of all Boolean functions in n variables is

22
n

nB  .

Proof: By definition, a Boolean function f is a mapping: 2 2:
n

nVf X Y   .

Since the cardinality of the set for all linear functions is 2n , the following assertion

holds for all functions:

22
nX

functions Y  and so 22
n

nB  .

■

Example 2.12:

For 4,n  the number of Boolean functions is
42 162 2 . For 6,n  the

number of Boolean functions is
62 642 2 . As can be seen from these examples,

the class of Boolean functions becomes extremely large. From a cryptographic

point of view, one wants to count the elements of such a set because if the set is

small, then one can implement an exhaustive approach and do whatever

analysis one wants to do.

4. Hamming Weight and Distance

In coding theory, the Hamming distance between (two) bit strings of the

same size is the number of bits where they differ. The Hamming distance is a

metric and represents the minimum number of necessary substitutions to

transform a bit string into another.

 17

For example, if 101001101f  and 011011100g  , then their Hamming distance

is (,) 4d f g  . The Hamming weight of the string is the number of 1’s it has, its

distance from the 0-vector. Thus, in the previous example () 5, () 5wt f wt g  .

The Hamming weight of a Boolean function f is the number of 1’s in the truth

table of f . More formally:

Definition 2.13: The Hamming weight of a vector nx V , denoted by

()wt x , is the number of 1’s in the vector x . For a Boolean function on nV ,

let { : () 1}f nx V f x    be the support of f . The Hamming weight of a

function f is the Hamming weight of its truth table, that is the cardinality of

1(1)f  or equivalently () fwt f   .The Hamming distance between two

functions 2, : nf g V   , denoted by (,)d f g is defined as:

(,) ()d f g wt f g 

5. Walsh Transform

The Walsh or Handamard transform is a type of discrete Fourier transform

of a Boolean function. Using the Walsh transform, correlations in combining

functions may be identified.

Definition 2.14: “The Walsh transform of a function f on a vector space

nV of dimension n over 2F (with the values of f taken to be real numbers

0 and 1) is the map () : nW f V R , defined by

(2.1)

()() ()(1)
n

w x

x V

W f w f x 



 

 18

This defines the coefficients of f with respect to the orthogonal basis of

the group characters () (1)w x
wQ x   ; f can be recovered by the inverse Walsh

transform:

() 2 ()()(1)

n

n w x

x V

f x W f w 



  (2.2)

The Walsh spectrum of f is the list of 2n Walsh coefficients given by (2.1)

as w varies” [13, p. 8].

 19

III. CORRELATION AND ALGEBRAIC ATTACKS

A. INTRODUCTION

In recent years where communication, computer-based systems have

been commonly used in both commercial and military environments, stream

ciphers remain dominant since a stream cipher provides speed to the encryption

process and allows synchronization between data and voice in broadband

channels. Short-range (Bluetooth) and medium-range (Wi-Fi) wireless networks

use stream ciphers to provide authentication and data encryption between a host

and wireless access points. Bluetooth uses an E0 stream cipher and WEP uses

RC4 stream cipher that provides weak encryption. Wi-Fi uses the IEEE 802.11i

(Wide Protected Access 2- WPA2) protocol for encryption. WPA2 uses the block

cipher advanced encryption standard (AES). World interoperability for microwave

access (Wi-Max) is an IEEE 802.16 standard that aims to deliver wireless data

fast and over a long range. Wi-Max uses a combination of AES and 3DES (data

encryption standard). In this chapter, we present the foundations of correlation

and algebraic attacks. We review the basic features of these attacks and discuss

the results of the implementation of these attacks on stream ciphers used in a

wireless environment such as Bluetooth.

B. PROPERTIES OF BOOLEAN FUNCTIONS

The Boolean functions are polynomials of n variables and bit output, are

used in several cryptographic applications in wireless systems and must satisfy

several cryptographic criteria. Although the quality of these properties depends

on the specific cryptosystem that is implemented, the properties that a Boolean

function must focus on are balance, nonlinearity, correlation immunity, and high

algebraic degree, just to mention a few.

 20

1. Balance of Boolean Functions

A Boolean function is balanced if its output is equally distributed, which

means that its Hamming weight is 12n , where n is the number of variables.

2. Nonlinearity

The nonlinearity of a Boolean function f , f , is defined as the minimum

Hamming distance between the function itself and every single function that

belongs to the set of the affine Boolean functions. Thus,

min (,),
n

f d f


  

where n is the class of all affine functions on vector space nV [13, p. 7].

3. Correlation and Algebraic Immunity

A Boolean function f has correlation immunity of order k if its values are

statistically independent of any subset of k input variables. Correlation is a useful

concept in cryptanalysis, because it may reveal to an attacker how an encryption

function f behaves if one slightly changes the input. Furthermore, a Boolean

function with low-order degree of correlation immunity is more susceptible to

attacks on the system than a Boolean function of high-order degree with

correlation immunity. Siegenthaler in [15] showed that a high-algebraic degree

will restrict the maximum possible correlation immunity when the correlation

immunity k of a Boolean function f of degree d and n variables for a given set of

input variables satisfies the relation .k d n 

Definition 3.1: An annihilator of a polynomial f is a nonzero polynomial

g , such that 0.fg 

The above definition motivates the concept of algebraic immunity ()AI f of a

Boolean function f of degree d and of n variables. ()AI f is the least value of

 21

d such that either f or 1f  has an annihilator of degree d . In other words,

given f and g of minimum degree d , such that 0fg  or (1) 0f g  , then the

algebraic immunity is d .

Example 3.2:

Assume 1 2 3 4 1 2 3 4(, , ,)f x x x x x x x x and 1 2 3 4 1 2 3 4(, , ,)g x x x x x x x x    , then

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 0fg x x x x x x x x x x x x x x x x     , since 1 1 1 2 2 2, 3 3 3 4 4 4, , .x x x x x x x x x x x x   

Notice that f is of degree 4 with four variables whereas g is of degree 1.

 ■

C. CORRELATION ATTACKS

Correlation and fast or conditional correlation attacks [1], [2] use a biased

relation between keystream and certain LFSR output sequences that have to be

found. A correlation attack is a probabilistic approach of attacking. When an

attacker has access to the output of the LFSRs of a cipher of a cryptosystem and

the output of a Boolean function that combines the outputs of all the LFSRs, then

he may find the initial values of the LFSRs by simply guessing the initial values.

The following example illustrates the correlation attack process.

Example 3.3:

Suppose that a keystream generator consists of three LFSRs, say , ,x y z ,

of lengths three, four, and five respectively. Assume that the combiner Boolean

function is of the form:

(, ,)f x y z xy yz z  

Then, the initial value of the key must be 12 = 3+4+5 bits long.

Suppose that the initial values of the LFSRs are 011, 0101, 11100x y z   , and

for bits 0,1,2,...23i  the following evaluations hold:

 22

011100101110010111001011

010110010001111010110010

111000110111010100001001

111100100110010110001011

i

i

i

i

x

y

z

k






where ik is the keystream.

The truth table of the combined Boolean function f is of the following form:

x y z f

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

where 01000111f  .

By comparing the columns of variables x, y with f one can easily observe that

(, ,)f x y z x with probability () 3/ 4P f x  and (, ,)f x y z z with probability

() 3 / 4P f z  . Assume that the attacker has access to the following keystream

table:

111100100110010110001011ik 

The attacker is trying to find the initial values of the LFSRs and he guesses that

111x  , and he then generates the first 24 bits of x and compares it to ik as

follows:

 23

111001011100101110010111

111100100110010110001011
i

i

x

k




Comparison of the two shows that only 12 out of 24 bits match exactly, so the

question is this: can an attacker make a better guess? If the attacker guesses

011x  and he then generates the first 24 bits of x and compares it to ik , he will

find 21 out of 24 bits, which is a better match, so the attacker has found the initial

values of x as seen below:

011100101110010111001011

111100100110010110001011
i

i

x

k




If the n LFSRs have lengths 0 1 1, ,..., nn n n  , then the correlation attack needs

0 111 112 2 ... 2 nn nn     effort, which is much less than the work required for the

exhaustive key search that is 0 1 1... 12 nn n n     .

The main derivatives of correlation attacks are fast correlation attacks and

conditional correlation attacks. Lu and Vaudenay [1] in 2004 introduced a fast

correlation attack and implemented it in a Bluetooth E0 keystream generator

(Chapter V details an E0 keystream generator). Despite the fact that correlations

of E0 have been discussed but only for a short sequence of bits, Lu and

Vaudenay formulated a powerful computation method of correlations using a

recursive expression based on the maximum likelihood decoding (MLD)

algorithm by means of a fast Walsh transform (FWT). In order for their attack to

succeed, they built a distinguisher for E0 based on the largest bias they found.

Their best result, as it concerns E0, is limited to 372 operations for precomputation

and
392 operations for the actual keysearch.

The conditional correlation attack takes advantage of the linear correlation

of the inputs conditioned on a known output pattern of a particular nonlinear

function and was proposed by Lu, Meier and Vaudenay in 2005. The best result

that they obtained on a Bluetooth E0 keystream generator was in 382 operations

required the first 24 bits of 23.82 frames [2].

 24

D. ALGEBRAIC ATTACKS

At a very high level, algebraic attacks on stream ciphers based upon

LFSRs recover the secret key by solving an over-defined system of multivariable

algebraic equations. One successfully does so by exploiting multivariable

relations involving keybits and output bits, this process becomes more efficient

once relations of low degrees can be found. The idea of algebraic attacks is

based on the capability of an attacker to solve a system of nonlinear multivariable

equations of low degree. Courtois and Meier introduced algebraic attacks [16] in

2003. Algebraic attacks have been successful in breaking some keystream

generators like Toyocrypt and LILI 128 by drastically reducing the computation

time needed. The key idea is to generate low-degree equations by multiplying the

initial equations by well-chosen multivariable polynomials. The basic methods

used to solve the derived system of equations are the Gröbner basis algorithm or

linearization methods like extended linearization (XL) [17].

Courtois and Meier introduced three scenarios (S3a, S3b and S3c) under

which low-degree relations may exist in order to implement algebraic attacks

[18].

 S3a - assume that there is a function g of low degree such that

0fg  and fg is a low-degree function, where f is a Boolean encryption

function

 S3b - assume that there is a function g of low degree such that 0fg  ,

where f is a Boolean encryption function

 S3c. assume that there is a function g of high degree and f is of high

degree, such that 0fg  and fg is of a low-degree function, where f is a

Boolean encryption function

Meier, Pasalic and Carlet [19] described a method to find all possible annihilators

of a given Boolean function f and an algorithm which determines whether a

Boolean function of n variables has low algebraic immunity.

 25

Several algorithms have been introduced that assist in reducing the

complexity of solving systems of multivariable equations, but there is no silver

bullet, since Garey and Johnson [20] indicate that solving such systems of

multivariate polynomial equations is a nonpolynomial (NP)-hard problem. The

classical algorithm for solving such a system of equations is Buchberger’s

algorithm, which transforms the polynomial equations to a Gröbner basis [21]. A

Gröbner basis is a set of multivariate polynomials that has the property of

Gaussian elimination (one may solve one variable at a time). Every set of

polynomials can be transformed into a Gröbner basis. The solution to a Gröbner

basis is the same as for the original equation. The linearization algorithms, like

XL, have the following steps:

 Find an over-defined equation

 Replace each monomial with a new variable

 Solve the new system of equations as a linear system

Example 3.4:

Assume the following system of equations :

1 2 3

2
3 1 2

1 2 1

2 2
1 1 2 3

2 2
3 1 2

2
1 2

0

1 0

0

0

0

0

x x x

x x x

x x x

x x x x

x x x

x x

  

  
 

  

  

 

By substitution, 2 2
1 3 2 1 2 3 1, , ,u x u x x u x  

The following system of linear equations is then obtained:

 26

1 2 3

1 2

2 1

3 2 1

1 3 2

3 2

0

1 0

0

0

0

0

x x x

u u

u x

u u u

u u x

u x

  
  
 

  
  
 

which is easy to solve.

In 2003, Armchnecht and Krause [22] applied algebraic attacks in wireless

systems like Bluetooth E0 in which the key could be recovered in 68.482 operations

after the adversary had knowledge of 23.072 keystream bits. Armchnecht in 2004,

by using a precomputation step, reduced the complexity to 54.512 operations after

the adversary had knowledge of 23.442 keystream bits [23].

E. CONCLUSION

In this chapter, the author reviewed some of the recent types of attacks on

wireless systems, namely correlation and algebraic attacks. It seems that

correlation attacks are faster in the computational process in wireless encryption

systems, like Bluetooth, which use stream ciphers, yet algebraic attacks require

less data during the preprocessing phase. In the following chapters, the author

will investigate a recently introduced type of algebraic attack, the cube attack,

which will be applied on the E0 keystream generator.

 27

IV. CUBE ATTACK

A. INTRODUCTION

At Crypto Conference 2008, Shamir described a new type of algebraic

attack, the cube attack. In September 2008, Dinur and Shamir published a paper

on eprint [4] entitled “Cube Attacks on Tweakable Black Boxes Polynomials”

describing their approach. The cube attack is a generic attack that may be

applied to block ciphers, stream ciphers, or even keyed hash functions without

necessarily having knowledge of the internal structure of the cipher, as long as at

least one output bit can be represented by a polynomial of low degree of the

secret and public variables. Their approach is based on the basic algebraic

cryptanalysis concept, which attempts to lower the degree of the polynomial

equations that represent a cryptosystem by polynomials of lower degree. The

polynomial equations used to describe a cryptosystem are variants derived from

a master polynomial by setting some variables to any possible value (0 or 1) and

then summing the results. They call this attack the cube attack

“...since it sets some public variables to all their possible values in n ,

(1)d  -dimensional Boolean cubes, and sums the results in each cube, where d

represents the degree of the polynomial and n is the number of variables."

[4, p. 5]

The mathematical concepts we use in this chapter are Boolean functions

(polynomials of n variables and bit output), factorization of multivariable

equations to reveal linear co-factors called superpolys, and solving a system of

linear equations.

B. BACKGROUND/KEY OBSERVATIONS ON THE CUBE ATTACK

Actually, the idea of the cube attack is not new. Variations of this attack

have been proposed in [24], [25], [26]. These approaches are mostly based on

the use of heuristics that sum the output values of Boolean cubes of publicly-

 28

known variables. They are referred to as chosen-IV statistical attacks and are

mainly applicable against stream ciphers. However, the cube attack has a more

wide range of targets and may be applied to block ciphers.

In the cube attack, when the master polynomial is random one may

eliminate with high probability all of the nonlinear terms by using, for example, a

chosen plaintext attack, thus reducing the complexity from polynomial time to a

system of linear equations that is (relatively) easy to solve. Dinur and Shamir

implemented their cube attack on the Trivium stream cipher and recovered the

encryption key in 192 bit operations. The previous best-known attempt was made

by Fischer, Khazaei and Meier in [27], using a chosen-IV statistical analysis.

They succeeded in key recovery of 552 bit operations. The master polynomial was

in algebraic normal form (ANF), which means that it must be in sum of products

of variables.

The following theorem expresses the concept of the cube attack.

Theorem 4.1: [from 5] Let ()f x be a polynomial in n variables of

degree d . Suppose 0 k d  and t is the monomial 0 1 1... kx x x  . Suppose f can

be written in the following form:

 () () (),t tf x tP x Q x  (4.1)

where none of the terms in ()tQ x is divisible by t . Note that deg() .tP d k 

Then, the sum f over all 0 1 2(,...,) k
kx x F  ,

0 1 2(,...,) k
kx x F

f
 
 ,considered as a

polynomial in k , equals

 k

1 1(1,...,1, , ,...,)t k k nP x x x 

and hence is a polynomial of degree at most d k .

 29

Proof: Consider the following equality: t tf tP Q  .

Then,

0 1 2

1 1
(,...,)

(1,...,1, , ,...,)
k

k

t t k k n
x x F

tP P x x x


 



0 1 2(,...,)

.
k

k

t
x x F

Q
 

 

However,
0 1 2(,...,)

0
k

k

t
x x F

tP
 



since in order for the summation to be different from 0,

all 0, 1..., 1kx x   , hence

0 1 2

1 1
(,...,)

(1,...,1, , ,...,).
k

k

t t k k n
x x F

tP P x x x


 




Furthermore, tQ is a sum of monomials that are not divisible by t. Let m be any

one of these monomials. Since m is not divisible by t, then ix is excluded for

0 1i k   .For instance, if 0x

is excluded,

then the sum across all

0, 1 2(...) k
kx x F  can be further split into two sums: the sum for 0 0x  and the sum

for 0 1x  .These two sums are equal since 0x does not appear in m.

Therefore,

0 1 2 0 1 2(,...,) (,...,)

0 0.
k k

k k

t
x x F x x F

m Q
  

    ■

The polynomial f written in the form of Theorem 4.1 is called a master

polynomial.

The following example illustrates Theorem 4.1.

Example 4.2:

Consider given a master polynomial f of degree d = 3 and of four

variables, two known variables 1 2(,)x x and two unknown or secret variables

3 4(,)x x . Suppose f has the following algebraic normal form (ANF):

 30

1 2 3 4 1 2 3 1 2 4 2 3 4 1 3 4 1 2 1 1 3 4 3(, , ,) 1f x          , (4.2)

Third-degree polynomials with four variables may have
4 4 4 4

3 2 1 0

15
                 
       

possible terms. From these 15 terms, five terms are going to be linear and the

remaining ten terms are going to be nonlinear. To eliminate all the nonlinear

terms using Gaussian elimination, and in order to eliminate all the nonlinear

terms, at least ten such polynomials of the total 102 possible terms, over (2)GF ,

are needed. If the two known variables 1 2,x x are set in all their possible values (0

or 1), then one can construct 22 4 derived polynomials, which may not be

sufficient.

1x 2x

Derived Polynomials

from f

Formal Sum over all values of

1 2(,)x x

0 0
4 3 1x x 

0 1
3 4 4 3 1x x x x  

1 0
3 4 4x x x

1 1
3 1x 

 2
1 2

1 2 3 4 3 4

(,) 0,1

(, , ,) 1
x x

f x x x x x x


   ,[1]

Table 3. Formal sum of known variables

The points (0,0),(0,1),(1,0),(1,1) can be viewed as a corner of a square of

two dimensions (Figure 4.1).

 31

(1,0) (1,1)

(0,0) (0,1)

Figure 1. Square of Two Dimensions

This concept may scale to more than two variables. For example, if there

are three variables then the evaluation will be for eight points, and these

correspond to the corners of a cube in three dimensions, which is why Dinur and

Shamir called their process the cube attack (Figure 4.2).

(1,1,0) (1,1)

(1,0,0) (1,0,1)

(0,1,0) (0,1,1)

(0,0) (0,0,1)(0,0,0)

(1,1,1)

Figure 2. Cube of Three Dimensions

 32

In a similar fashion, once the function f is factored with respect to

coefficients 1 2,x x

 1 2 3 4 1 2 3 4 2 3 4 1 3 4 1 1 3 4 3(, , ,) (1) (1)f x x x x x x x x x x x x x x x x x x x          , (4.3)

where: 1 2It x x is the maxterm

3 4() 1
It

P x x x   is the superpoly, a linear-cofactor or linear

nonconstant polynomial

 2 3 4 1 3 4 1 1 3 4 3() 1
It

Q x x x x x x x x x x x x       is the remainder

The maxterms of the polynomial f are indexed by  1, 2I  , a subset of size 2,

where  1,2,...,I n is the index set of the variables that are multiplied together.

Theorem 4.1 is a basic theorem and is the tool used below to cryptanalyze the

Bluetooth E0 keystream generator.

Definition 4.3 [from 4]:. A maxterm of f is a term It or cube such that the

degree of the superpoly deg() 1
It

P  , where
It

P is a linear nonconstant polynomial.

Based on Theorem 4.1 and illustrated in Example 4.4, the sum of the

2k polynomials derived from the initial polynomial f by assigning all possible

values to the k variables eliminates all terms, except those that are contained in

the superpoly in f .

 33

Observation 4.4: Using the process described in Theorem 4.1, the

monomial coefficients can be computed once all the values of the corresponding

variables are summed.

Example 4.5:

Let f be the following monomial:

1 2 3 4 5 1 2 3 5 3 4(, , , ,)f x x x x x x x x x x x   .

Then all values of 1 2 3 4 5, , , ,x x x x x are summed as follows:

(0,0,0,0,0) (0,0,0,0,1) (0,0,0,1,0) (0,0,1,0,0) ... (1,1,1,1,1) 0f f f f f      .

The value of the expression above represents the coefficient of the monomial

1 2 3 4 5x x x x x . Thus,

1 2 3 4 5 1 2 3 5 3 4 1 2 3 4 5(, , , ,) 0f x x x x x x x x x x x x x x x x     .

Observation 4.4 may be generalized. Assume that the encryption function is of

the form:

 (,)z f x v , (4.4)

Equation (4.4) actually represents the encryption function of a stream cipher that

takes as input n-secret bits x and m-known bits v of initialization vector (IV) and

outputs a keystream bit z .

Initially, the initialization vector bits v are fixed over 2F , and T is the set of all

possible values of v , so 2mT  .

If (,)f x v is summed over v T , then we can write:

 (,) ()
v T

f x v L x


 , (4.5)

 34

In accordance with Theorem 4.1, if () 0L x  then a maxterm can be found and

therefore one linear relation of the key bits is obtained. Therefore, in order to

obtain 1n  relations one needs to use the same f with different maxterms.

Since there are n such linearly independent relations of the key bits, the secret

key can be found by using Gaussian elimination or a chosen plaintext attack.

The cube attack may be completed in two phases: the preprocessing

phase where the attacker finds as many maxterms as possible, and the actual

attacking phase where the attacker solves the system of linear equations.

C. PREPROCESSING AND ONLINE PHASE

1. Preprocessing Phase

Assume that the following relation represents an encryption function of a

cipher represented in accordance to theorem 4.1

 1 1(,...,) () (,...,)
I In I t t nf x x t P x Q x x  , (4.6)

and let IC represent the summation cube of a set of variables with index I .

Then, if It is a maxterm of the encryption function f in (4.6), then the attacker

may compute the free term of ()
It

P x by summing all the values of ()f x over all

variables modulo 2 that are zero except those that appear in IC ,

0 1 2

1 1
(,...,)

(1,...,1, , ,...,)
k

k

t k k n
x x F

f P x x x


 




Then the attacker can compute the coefficient of ix in the linear expression ()
It

P x

by summing modulo 2 all values of ()f x for input vectors equal to 0 except at ix

which is 1, as detailed in the proof of Theorem 4.1. [4]

 35

In the preprocessing phase, the attacker is trying to find as many

maxterms 1(,...,)nv v as possible and their corresponding superpolys 1(,...,)nx x , in

the following manner:

1 2 3 1 2 3(,) () ...f x v v v v x x x   

4 5 6 2 4(,) () ...f x v v v v x x  

3 5 4 6(,) () ...f x v v v x x  

..

2 4 5 6(,) () ...f x v v v x x  

When the attacker has no information about the structure of the encryption

function, then it can be considered as a blackbox polynomial. The attacker can

reconstruct the superpolys using linearity tests. All he can do is query the

function f , meaning that he can pass in a value x of and get a value of ()f x .

Because in a linear expression the coefficient of any variable ix is 1 if and only if

changing the value of ix changes the value of the expression, the free term may

be computed by setting all variables to 0.

2. Online Phase

In this phase, the attacker has to solve a system of linear equations where

each linear equation is the co-factor
It

P of the maxterm It . The attacker simply

applies a chosen plaintext attack on the cipher. The attacker has to find as many

linear relations as possible in order to solve the system of linear equations.

D. EXTENSIONS OF THE CUBE ATTACK

Zhang et al. in [5] proposed two different variations of the cube attack: the

cube attack with annihilators and the cube attack on a vectorial Boolean function

finding relations with low degree polynomials.

 36

1. Cube Attack with Annihilators

In cube attacks with annihilators the focus is on stream ciphers. Their

method is a combination of the algebraic attack of Courtois and Meier [18], and

the cube attack [5]. They adapt the main observation of Courtois and Meier about

polynomials: for some polynomial f one may find a polynomial g of lower degree

than f , such that h fg .

Assume that there is a stream cipher and the output bit is

 (,)z f x v , (4.7)

where x is the unknown variable and v represents the known variable. Courtois’

concept may be applied in the cube attack and one ends up with the following

relation [from 5]:

 (,) (,) (,)
v C v C

h x v f x v g x v
 

  , (4.8)

where deg()g k , deg()f d and k d . Then deg()h l , where l d and l k .

In the basic steps of the cube attack with annihilators the attacker, initially uses

known algorithms to find g and h . Then, in the preprocessing phase, the attacker

computes the polynomial derived from the summation

 (,)
v C

h x v

 , (4.9)

and in the online phase, he calculates through linearization the summation

 (,) (,) (,)
v C v C

f x v g x v h x v
 

  , (4.10)

Zhang et al. implemented the above attack in a Toyocrypt cipher with re-

synchronization, breaking the cipher in a few milliseconds on an ordinary PC [5].

2. Cube Attack on a Vectorial Filter Function with Low Degree

In the cube attack on a vectorial filter function with low degree Zhang et al.

in [5] combined the cube attack with annihilators with a low degree on vectorial

 37

equations that are obtained from the computation of the rank of the matrices of

some monomials.

Assuming we have the following vectorial filter function:

 (,)z f x v , (4.11)

where x are unknown bits of size n ,v are known bits of size m and z is a vector

of multiple output bits. A function of (, ,)g x v z is found where deg(,)x v k such

that (,) (, , (,))h x v g x v f x v is of degree l , with deg()k l f  .

The attack phases are as follows [from 5]:

Firstly, ,g h must be found. Therefore we choose
0

e n

k

 
 
 

 maxterms, where e is

the vector where the k-th component is 1 and the rest are 0. For each maxterm

the summation (,)
C

h x v is computed by finding the coefficient of every x-

monomial.

Finally, in the online phase for each maxterm (, ,)
C

g x v z is computed as a

polynomial of x , since z is known.

The cube attack with annihilators may be applied on single-bit output

ciphers whereas the cube attack with a filter function may be applied on multi-

output stream ciphers.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

V. BLUETOOTH KEY STREAM GENERATOR E0

A. INTRODUCTION

The Bluetooth encryption concept is described in Volume 2, Part C,

Chapter 4.2 of the Bluetooth specification document [28]. Bluetooth is the name

of a wireless communication protocol used for exchanging data from mobile and

fixed devices (laptops, PCs, mobile phones, etc.) at low energy and short range,

thus creating personal area networks (PANs). Bluetooth communication ranges

(transmitter/receiver) from 1 to 10 meters (approximately 33 feet), and high-

energy Bluetooth devices enable ranges up to 100 meters (approximately 328

feet). Bluetooth provides authentication mechanisms and data encryption,

ensuring confidentiality of the data using point-to-point or broadcast encryption.

[28, p. 935] Bluetooth uses the stream cipher algorithm E0 for encryption, which

is a combinatory generator with memory. For the rest of the thesis, the author will

concentrate on analyzing the key generation process investigating the

cryptographic strength of E0 under a cube attack.

B. BLUETOOTH’S ENCRYPTION APPROACH

Every time two Bluetooth devices want to communicate securely with each

other, key exchange protocols are in use. Once both users agree on a shared

secret, called link key, and authenticate themselves, this link key is used later to

generate the encryption key ()cK . Although Bluetooth uses algorithms E21 and

E22, which are based on the block cipher Secure and Fast Encryption Routine

(SAFER+), to authenticate its users and for key derivation, Bluetooth does not

use these algorithms to encrypt information [28, p. 952]. The actual data of the

packet are enciphered separately. The encryption algorithm E0 uses the

originator’s Bluetooth device address, usually called the master device

(BD_ADDR), twenty-six bits of the originator’s clock time and the encryption

key CK .

 40

CK is the secret key that is produced by the current link key. A 96-bit

encryption offset number called COF , known from the authentication

procedure, and a 128-bit random number (EN_RAND) which is a public variable

that is transmitted as plaintext, are needed in order to produce this encryption

key CK , as depicted in Figure 3. This process executes in the encryption

algorithm E3.

_EN RAND

COF

_Link Key
3E

cK

Figure 3. Encryption Algorithm E3 (After [28, p. 953])

Inside E0, the secret key CK is modified into another key, namely
'
CK .

The
'
CK key is used along with the public variables, the originating device's

media access control (MAC) address, and the clock value. The clock value

changes on each packet (and acts as an “IV”), as is shown in Figure 4.

 41

cipherK

0E
_ ABD ADDR

Aclock

cK

A Bdata 

B Adata 

cipherK

0E
_ ABD ADDR

Aclock

cK

A Bdata 

B Adata 

_ AEN RAND

data

Figure 4. Functional Description of the Encryption Procedure (After [28 p. 937])

The encryption algorithm E0 generates a binary keystream, called CipherK ,

which is bitwise XORed with the plaintext. The cipher is symmetric and the

decryption will be performed in a similar way, as the receiver generates the same

keystream that is then bitwise XORed with the ciphertext to produce the plaintext.

C. STREAM CIPHER E0

Stream cipher E0 is a keystream combination generator with memory. It

uses four LFSRs of total length 128 bits and a nonlinear combiner function with

memory. A finite state machine, called a summation combiner, with sixteen

states, combines the output of the LFSRs. The output of this state machine

represents the key sequence, or during the initialization phase is the randomized

initial start value. The algorithm uses the encryption key CK , a 48-bit address,

the master clock bits 26 1CLK  , and a 128-bit random number [28, p. 937–938].

The setup of an E0 keystream generator is depicted in Figure 5.

 42

2
 
 

1z

1z

1
tX

2
tX

3
tX

4
tX

tz

tc

0
tc

1tc 
1
tX
2
tX

3
tX

3
tX
4
tX

ty 1tS 

Figure 5. Encryption Procedure (After [39])

The four linear feedback shift registers E0 (LFSR1, LFSR2, LFSR and

LFSR4) of E0 have the following lengths:

1 2 3 425, 31, 33, 39L L L L    .

Their corresponding polynomials, which are all primitive, are shown in Table 5.

 43

Table 4. Primitive Feedback Polynomials of E0 (From [28, p. 938])

The Hamming weight of each primitive polynomial is five; therefore, the

generated sequences have good statistical properties. On the other hand, they

are easy to implement in hardware.

The encryption process of E0 is described below. The LFSRs and the

memory bits are initialized with the key, an address, a random number, and

clocking bits. The clocking bits ensure that the system will not run numerous

times with the same initialization and therefore disclose bits of the key. Let i
tx

denote the output bit of iLFSR at clock-time t. Then we generate the value ty

from the 4th tuple 1 2 3 4, , ,t t t tx x x x by:

4

1

i
t t

i

y x


 , (5.1)

The summation is over the integers, which means that ty belongs to  0,1, 2,3, 4 .

The output of the summation generator can be obtained as follows. 2

The function 0f is formed using the XOR operation and one can generate tz of

the keystream:

2 The glossary of E0 keystream generator can be found in Appendix D.

Primitive Feedback Polynomials of E0

i
iL Primitive Feedback Polynomials ()if x Hamming Weight

LFSR1 25 25 20 12 8 1x x x x    5

LFSR2 31 31 24 16 12 1x x x x    5

LFSR3 33 33 28 24 4 1x x x x    5

LFSR4 39 39 36 28 4 1x x x x    5

 44

0 1 2 3 4 0

0 (,)t t t t t t t tz f x c x x x x c      ,  0,1tz  (5.2)

The nonlinearity of E0 comes from the function 1f , whose output is a two-bit

sequence ts .

 1 0

1 1 1 1(,) (,) 0,1,2,3
2

t t
t t t t t

y c
s s s f x c  

      
 (5.3)

The " " symbol in Equation (5.3) is the usual integer sum. The memory update

function is a composition of 1f and T and is linear with the following form:

1 0

1 1 1 1 1 1 1 2 1(,) (, ,) [] []t t t t t t t t tc c c T s c c s T c T c           , (5.4)

where 1[.]T and 2[.]T are two different linear bijections over GF(4), summarized in

Table 6 [28, p. 939].

Table 5. Mappings of 1T and 2T

The E0 algorithm must be initialized with a value from the four LFSRs (128

bits in total) and the four bits that specify the values of 0 1,c c . The 132-bit initial

value is derived from four inputs using the key stream generator. The input

parameters are cK , a 128-bit random number RAND, a 48-bit Bluetooth device

address, and the twenty-six originator’s device clock bits 26 1CLK  [28, p. 940].

E0 Linear Bijections Mapping to Binary Vectors

0 1x x 1[]T x 2[]T x

00 00 00

01 01 11

10 10 01

11 11 10

1 1 0 1 0: (,) (,)T x x x x

2 1 0 0 1 0: (,) (,)T x x x x x

 45

D. MODELING ENCRYPTION FUNCTION OF E0

During the author’s investigation of the encryption function of the E0

algorithm, he adopted Armknecht and Krause’s approach in order to find a

function that is not dependent on memory bits and holds for every clock tick. [22]

Let tz be the keystream bit produced by E0 at clock t , 1tz  be the

keystream bit produced by E0 at clock 1t  , etc. These bits are randomly

generated. At every clock value, the output of E0 is the bit tz , which is dependent

on the output bits of four LFSRs  41 2 3 4(, , ,) 0,1t t t t tx x x x x  and the four memory

bits  4
0,1tc  .

In more detail, the components of 1 0(,)t t tc c c are as follows:

1 1 1 0
1 2t t t tc s c c    , (5.5)

0 0 0 1 0

1 2 2t t t t tc s c c c      , (5.6)

The goal of the cryptanalysis is to come up with an equation that describes the

encryption of the E0 keystream generator consisting only of the bits of the LFSRs

and key stream bits tz , while eliminating the memory bits tc . The reason is that

the author does not want to use a polynomial of degree n where the system of

equations would be unsolvable [23, p. 5].

The encryption function G for E0 becomes

 1 2 3((), , , ,) 0t
t t t tG L K z z z z    , where 1, 2 16() (,...,)tL K x x x (5.7)

 46

More specifically,

2 4
1 2 3 1 1 2 3 1()t t t t t t t t t tz z z z z z z z               
1

1 2 3 1 1 2 1 3()t t t t t t t t t tz z z z z z z z z             
1 1 1 1 2

1 1 1(1)t t t t t tz         1 1 1
2 2 2 1 2 1(1)t t t t t tz z z         

1 2
2 1 2t t tz     2 2 1 2 2

2 2 1 1 2 1(1)t t t t t tz           
1 1 1 1 2

3 3 1 1 3 1(1)t t t t t tz           

3 2 1
1 1 1 1 0t t t tz       , (5.8)

where i
t denotes the i-th elementary symmetric polynomial in i

tx .

1
1 2 3 4

2
1 2 1 3 1 4 2 3 2 4 3 4

3
1 2 3 1 2 4 1 3 4 2 3 4

4
1 2 3 4

t

t

t

t

x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x

    

      

    

  (5.9)

1
1 5 6 7 8

2
1 5 6 5 7 5 8 6 7 6 8 7 8

3
1 5 6 7 5 6 8 5 7 8 6 7 8

4
1 5 6 7 8

t

t

t

t

x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x









    

      

    

  (5.10)

1
2 9 10 11 12

2
2 9 10 9 11 9 12 10 11 10 12 11 12

3
2 9 10 11 9 10 12 9 11 12 10 11 12

4
2 9 10 11 12

t

t

t

t

x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x









    

      

    

  (5.11)

1
3 13 14 15 16

2
3 13 14 13 15 13 16 14 15 14 16 15 16

3
3 13 14 15 13 14 16 13 15 16 14 15 16

4
3 13 14 15 16

t

t

t

t

x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x









    

      

    

  (5.12)

 47

and the output bit streams for clock times t, t+1, t+2, t+3 are as follows:

1

2

3

t

t

t

t

z a

z b

z c

z d










 (5.13)

Theorem 5.1: The encryption function of E0 depends only on the output

bits of the four LFSRs and the output keystream bit and holds for every clock tick.

Four consecutive clock ticks are needed.

Proof [from [22]]:

The key stream generator E0 consists of four LFSRs and four memory

bits. For every clock time t an output tz is produced based on the outputs

1 2 3 4(, , ,)t t t t tx x x x x of the four LFSRs and the four memory bits 1 1(, , ,)t t t t tc q p q p  .

The next memory bits at clock time 1t  are 1 1 1(, , ,)t t t t tc q p q p   . The memory

bits ,t tq p appear in both clock times of t and 1t  . The variable i
t denotes the i-

th elementary symmetric polynomial over 1 2 3 4(, , ,)t t t t tx x x x x , which is the sum of

all monomials of length 4s  .

Thus,

1

t t tz p   , (5.14)

 1 1 1(, , ,)t t t t tc q p q p   (5.15)

However, at the same time

1 0

1 1 1 1 1(, , ,)t t
t t t t t t tc s q p s q p q p         , (5.16)

1 2 3 4
1 0

1 1 1

2
(,)

2
t t t t t t

t t t

x x x x q p
s s s  

     
   

 
, (5.17)

 48

The contents of the LFSRs and the value of 1c are set at the beginning. All the

other values may be calculated from these.

From Equations (5.15) and (5.16), the following is obtained:

1 0

1 1 1 1 1 1 1(, , ,) (, , ,)t t
t t t t t t t t t t tc q p q p s q p s q p q p            (5.18)

Assume 0f and 1f are two Boolean functions derived from Equations (5.3) and

(5.4) such that:

1 2 3 4
1 (, , , , ,)i t t

t i t t t ts f x x x x q p  , where  0,1i (5.19)

Armknecht [22, p. 173–174] proved that the algebraic normal forms of 0f and 1f

have the expressions:

 2 1
0

t t
t tf p q    , (5.20)

 4 3 2 1
1

t t t t
t t t tf p q p q     . (5.21)

Based on Equation (5.18) we obtain

 0 2 1
1 1 1 1 1 1t t t t t t t t t t t tp s p q p p q q p p                , (5.22)

 1 4 3 2 1
1 1 1 1t t t t t t t t t t t t t tq s q p p q p q q p             , (5.23)

The values of 1tp  and 1tq  depend on 1 1, , , ,t t t t tx q q p p  and 1, , ,t t t tx q p p  ,

respectively.

Equations (5.22) and (5.23) are simplified by using the following equations:

 4 3
1() t t t tt p p      , (5.24)

 2 1() 1t t tt p    . (5.25)

Therefore, Equations (5.22) and (5.23) become

 1 1 1() 1t t t tp t p p q        , (5.26)

 49

 1 () ()t tq t t q    , (5.27)

From Equation (5.27), the following is obtained:

 1() ()(() ())t tt q t t t q     or

 1()(()) 0t tt t q q      , since () () ()t t t    . (5.28)

Equation (5.26) is then transformed into the following:

 1 1 1() 1t t t t tq q t p p p         . (5.29)

Replacing t by 1t  in Equation 5.28 and applying Equation 5.29, we have:

 1 2()(() (1) 1) 0t t tt t t p p p          . (5.30)

Applying Equation (5.14) we are now able to derive Equation (5.8) which holds

for every clock t and does not have any memory bits in the equation.

2 4
1 2 3 1 1 2 3 1()t t t t t t t t t tz z z z z z z z               

1
1 2 3 1 1 2 1 3()t t t t t t t t t tz z z z z z z z z             

1 1 1 1 2
1 1 1(1)t t t t t tz         1 1 1

2 2 2 1 2 1(1)t t t t t tz z z         
1 2

2 1 2t t tz     2 2 1 2 2
2 2 1 1 2 1(1)t t t t t tz           

1 1 1 1 2
3 3 1 1 3 1(1)t t t t t tz           

3 2 1

1 1 1 1 0,t t t tz      

and in a more generic form:

1 2 16 1 2 3(, ,... , , , ,) 0t t t tG x x x z z z z   

■

Equation (5.8), of degree 4 with twenty variables, can be fully described by the

following expression:

 50

5 6 5 7 5 8 6 7 6 8 7 8 5 6 7 8

5 6 7 8 1 2 3 4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 5 7 5 8 6 7 6 8 7 8

9 10 11 12 9

0

()()

()()

()()(1)

()()

() (

a b c d

x x x x x x x x x x x x a b c d x x x x

x x x x a c d ab bc bd x x x x

x x x x x x x x b

x x x x x x x x x x x x x x x x

x x x x b x

    
         

            
       
        
    10 11 12 5 6 7 8

9 10 11 12 5 6 5 7 5 8 6 7 6 8 7 8

9 10 9 11 9 12 10 11 10 12 11 12

9 10 9 11 9 12 10 11 10 12 11 12 5 6 7 8

9 10 9 11 9 12

)() (1)

()()

()

()()(1)

(

x x x x x x x c b

x x x x x x x x x x x x x x x x c

x x x x x x x x x x x x

x x x x x x x x x x x x x x x x b

x x x x x x

       
        
     
         
  10 11 10 12 11 12 5 6 5 7 5 8 6 7 6 8 7 8

13 14 15 16 13 14 15 16 5 6 7 8

13 14 15 16 5 6 5 7 5 8 6 7 6 8 7 8

5 6 7 5 6 8 5 7 8 6 7 8 5 6 5 7 5

)()

()()(1)

()()

x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x b

x x x x x x x x x x x x x x x x

x x x b x x x b x x x b x x x b x x x x x x

        
           
        

      8 6 7 6 8 7 8

5 6 7 8.

x x x x x x

x x x x

   
  

 (5.31)

The full expansion of the encryption function of can be found in Appendix A.

 51

VI. AUTOMATED TOOL FOR MODELING CUBE ATTACK

No matter how correct a mathematical theorem may appear to be,
one ought never to be satisfied that there was not something
imperfect about it until it also gives the impression of being
beautiful.

George Boole (1815–1864)

A. OVERVIEW

In this chapter, the author implemented Dinur and Shamir’s cube attack on

a Bluetooth E0 keystream generator. In order to do that, he modeled the E0

encryption function of Bluetooth in Chapter V. He then created an automated tool

in the Maple 12 environment (http://www.maplesoft.com) that finds all of the

maxterms and their corresponding superpolys (linear coefficients) of the

encryption function. Then, in the online phase, he used a chosen plaintext attack

in order to solve the system of linear equations he found. Eventually, he

evaluated the results and investigated the complexity of the process.

B. APPROACH—BASIC ASSUMPTIONS

The most time-consuming work in the computation process, namely

finding the maxterms and their corresponding superpolys, was executed in the

Maple 12 environment. Maple is a high-level programming language with

powerful built-in symbolic algebra, numerical and graphical capabilities. The

reasons why the author chose Maple 12 instead of any other programming

language like C, C++, Java, or symbolic Python were mainly that he wanted to

benefit from the advantages of a high-performance mathematical engine with

fully integrated numerals and symbols, especially in algebra. With this in mind,

under the guidance of an expert programmer in the Maple environment, Dr.

David Canright, Associate Professor of the Department of Applied Mathematics

of the Naval Postgraduate School’ the author created effective code in a compact

and optimal way.

 52

1. Modeling Environment

Maple uses a C-like programming language. It has many of the features

that other high-level programming languages have, like loops, conditionals, and

functions. Maple does not support classes of objects; however, this feature is

overcome by a rich set of packages available for Maple. Maple can generate

code in other high-level programming languages like C, Java, Fortran, Visual

Basic and Matlab using the CodeGeneration package. The OpenWatcom C

compiler is used for the Maple compiler. This allows the user to compile some

types of user-written Maple routines to increase code performance.

Maple 12 works on Windows (2000, 2003, XP, Vista), Macintosh, UNIX,

Linux and Solaris environments. Developers’ system recommendations include

the following [29]:

 CPU: AMD X86_64/ 1 GHz/Intel Xeon/ Intel 64

 RAM: 512MB (at least)

 Hard disk: 1 GB

The computational interfaces Maple 12 has available for its users include

the standard worksheet, which is the environment that the author worked in. The

standard worksheet is a full-feature graphical user interface that enables users to

create documents, and it displays all the calculations and possible errors in the

results. The standard interface is written primarily in Java to speed up the

computational process and provide portability. The standard worksheet has two

modes: the document mode and the worksheet mode. The main difference

between these two modes is that in the first interface the user hides all

commands used to perform calculations whereas in the latter interface the user

shows all commands. Maple 12 also has other user interfaces such as the

classic worksheet, which is a basic worksheet environment for computers with

limited memory; and the command line interface, in which a user may solve large

and complex problems without thorough graphical user interface features

available.

 53

The Maplesoft graphing calculator provides another Maple 12 interface

and is available for computers using the Microsoft Windows Operating System

only. This graphical user interface contains windows, textbox regions and other

visual interfaces that give the user a point–and-click interface to access the

computation processor of Maple without using the worksheet. Finally, Maple

provides the Mapletapplication. It has a graphical calculator interface that the

user can use to perform simple computations and create customizable graphs in

a windows environment only [30].

2. Basic Assumptions

In part, the cube attack is a chosen plaintext attack: the part that can be

manipulated by the attacker. To implement the cube attack, we assume the

attacker has the capability to properly send structured packets that the Bluetooth

receiver will respond to, thus providing the attacker with access to the encryption

machine. This machine behaves like an oracle. If the attacker convinces the

oracle it is a legitimate participant, it will be duped into sending data to the

attacker or another participant; however, the attacker can observe “over the air”

whatever responses the oracle or the user sends back.

For example, the attacker can masquerade as a real user, with sufficient

detail to send data to the oracle. The oracle will return encrypted data to the

attacker or an authorized user/participant in the communication process, and the

attacker will collect this data. The attacker thus gains some knowledge of the

output bitstreams for the combiner at clock ticks t, t1, t2, and t3.

The following theorem derived from our investigation:

Theorem 6.1:The maxterms of E0 encryption function can only be of 2nd

or 3rd degree.

Proof:

Assume that a maxterm could be of degree 4. By Definition 4.3 of the term

called maxterm, in order for a maxterm to exist there must be terms in the E0

 54

encryption function of the 5th degree. Since the encryption function being used in

this study (Appendix A) is of degree 4, it cannot have a maxterm of degree 4.

Assume that a maxterm could be of degree 1. Then, by the definition of

maxterm, since the cofactor must be linear and not constant, one must check all

the 2nd degree terms of the encryption function E0 in Equation (5.31). Thus, one

may observe there, that the only terms of the 2nd degree derive from the following

products:

2
1 1 2 3()t t t t tz z z z       , 1 1

1 1(1)t t tz    , 1 1
2 1 2 1(1)t t t tz z      , 2

2t , 1 1
3 1 1(1)t t tz    

and 2
1t .

Each term of the 2nd degree is examined as follows:

2
1 1 2 3

5 7 5 7 5 7 5 7 5 8 5 8 5 8 5 8

6 7 6 7 6 7 6 7 6 8 6 8 6 8 6 8

7 8 7 8 7 8 7 8

()

,

t t t t tz z z z

x x a x x b x x c x x d x x a x x b x x c x x d

x x a x x b x x c x x d x x a x x b x x c x x d

x x a x x b x x c x x d

       

       
       

  

 (6.1)

1 1
1 1

1 5 1 6 1 7 1 8 2 5 2 6 2 7 2 8

3 5 3 6 3 7 3 8 4 5 4 6 4 7 4 8

1 5 1 6 1 7 1 8 2 5 2 6 2 7 2 8

3 5 3 6 3 7 3 8 4 5 4 6 4 7 4 8

(1)

,

t t tz

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x b x x b x x b x x b x x b x x b x x b x x b

x x b x x b x x b x x b x x b x x b x x b x x b

    
       
       
       

      

 (6.2)

1 1
2 1 2 1

9 5 9 6 9 7 9 8 10 5

10 6 10 7 10 8 11 5 11 6

11 7 11 8 12 5 12 6 12 7

12 8 9 5 9 6 9 7 9 8 10 5

10 6 10 7 10 8

(1)t t t tz z

x x cb x x cb x x cb x x cb x x cb

x x cb x x cb x x cb x x cb x x cb

x x cb x x cb x x cb x x cb x x cb

x x cb x x c x x c x x c x x c x x c

x x c x x c x x c x

      
    
    
    
     
   11 5 11 6 11 7

11 8 12 5 12 6 12 7 12 8 ,

x c x x c x x c

x x c x x c x x c x x c x x c

  
   

 (6.3)

2
2 9 10 9 11 9 12 10 11 10 12 11 12 ,t x x x x x x x x x x x x       (6.4)

 55

1 1
3 1 1

13 5 13 6 13 7 13 8 14 5

14 6 14 7 14 8 15 5 15 6

15 7 15 8 16 5 16 6 16 7

16 8 13 5 13 6 13 7 13 8

14 5 14 6 14 7 14 8 15 5

15 6 15 7 15 8

(1)t t tz

x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x

x x x x b x x b x x b x x b

x x b x x b x x b x x b x x b

x x b x x b x x b x

     
    
    
    
    
    

   16 5 16 6

16 7 16 8 ,

x b x x b

x x b x x b

 


 (6.5)

2
1 5 6 5 7 5 8 6 7 6 8 7 8.t x x x x x x x x x x x x       (6.6)

Notice that a,b,c, and d are assumed known bits (0 ,1) because we assume that

the attacker can intercept them; therefore, their appearance as terms in the

equation does not increase the degree of the equation since they behave as

constants.

In the next steps, the author investigates the unknown variables 1 12,...,x x that

appear in Equations (6.1) through (6.6).

We note that if there is factoring by 1x (though of as a maxterm) in

Equations (6.1) and (6.2) where 1x appears, then one gets

1 5 6 7 8 5 6 7 8()x x x x x x b x b x b x b       . However, looking in the Equation

(5.31), 1x appears also in the product:

1 2
1 1 2 3 4 5 6 5 7 5 8 6 7 6 8 7 8()()t t x x x x x x x x x x x x x x x x           .

That means that the superpoly is not going to be linear but of 2nd degree and

based on Definition 4.3, 1x fails to be a maxterm.

Similarly, the appearance of the product, 1 2
1t t  in Equation (5.31), makes

the variables 2 3 4 5 6 7 8, , , , , ,x x x x x x x fail to be maxterms for the same reason.3

3 Note that variables 5 6 7 8, , ,x x x x fail at being maxterms because 4

1 5 6 7 8t x x x x  appears
in Equation (5.31).

 56

If one factors 9x from Equations (6.3) and (6.4), one gets the following

product: 9 5 6 7 8 10 11 12()x x cb x cb x cb x cb x x x      , where 9x fulfills Definition

4.3. However, looking at Equation (5.31) 9x also appears in the product:

2 2
2 1

9 10 9 11 9 12 10 11 10 12 11 12 5 6 5 7 5 8 6 7 6 8 7 8

9 10 5 6 9 10 5 7 9 10 5 8 9 10 6 7 9 10 6 8 9 10 7 8

9 11 5 6 9 11 5 7 9 11 5 8 9 11 6 7 9 11 6 8 9 11 7

()()
t t

x x

x x

x x

   
          

     
     8

9 12 5 6 9 12 5 7 9 12 5 8 9 12 6 7 9 12 6 8 9 12 7 8

10 11 5 6 10 11 5 7 10 11 5 8 10 11 6 7 10 11 6 8 10 11 7 8

10 12 5 6 10 12 5 7 10 12 5 8 10 12 6 7 10 12 6 8 10 12 7 8

11 1

x

x x

x x

x x

x x


     
     

     

2 5 6 11 12 5 7 11 12 5 8 11 12 6 7 11 12 6 8 11 12 7 8.x x    

That means that the superpoly is not going to be linear, but of 2nd degree, and

again by the Definition 4.3, 9x fails at being a maxterm. The appearance of the

same product 2 2
2 1t t   in Equation (5.31), makes variables 10 11 12, ,x x x fail at being

maxterms for the same reasons 9x did.4

The results detailed in Table 7 of section C of this chapter illustrate that

the maxterms of 2nd and 3rd degree do exist.

C. RESULTS

1. Preprocessing Phase

In Table 7, the author has displayed all the maxterms and their

corresponding linear coefficients or superpolys of the encryption function found

by running the program in the Maple environment.

4 Note that variables 9 10 11 12, , ,x x x x fail at being maxterms because 2 1 1 2

2 1 2 1, ,t t t t      
appear in Equation (5.31).

 57

Superpolys
(with Linear
Coefficients)

Cube Indexes of
Maxterms of the 2nd

Degree

Cube Indexes of Maxterms of
the 3rd Degree

6 7 8 1x x x b    {1,5}, {2,5}, {3,5}, {4,5}
{5,13}, {5,14}, {5,15},

{5,16}

{5,9,10}, {5,9,11}, {5,9,12},
{5,10,11}, {5,10,12},

{5,11,12}

5 7 8 1x x x b    {1,6}, {2,6}, {3,6}, {4,6},
{6,13}, {6,14}, {6,15},

{6,16}

{6,9,10}, {6,9,11}, {6,9,12},
{6,10,11}, {6,10,12}, {6,11,12}

5 6 8 1x x x b    {1,7}, {2,7}, {3,7}, {4,7},
{7,13},{7,14},{7,15},

{7,16}

{7,9,10}, {7,9,11}, {7,9,12},
{7,10,11}, {7,10,12}, {7,11,12}

5 6 7 1x x x b    {1,8}, {2,8}, {3,8}, {4,8},
{8,13}, {8,14}, {8,15},

{8,16}

{8,9,10}, {8,9,11}, {8,9,12},
{8,10,11}, {8,10,12}, {8,11,12}

9 10 11x x x c   - {5,6,12}, {5,7,12}, {5,8,12},
{6,7,12}, {6,8,12}, {7,8,12}

9 10 12x x x c   - {5,6,11}, {5,7,11}, {5,8,11},
{6,7,11}, {6,8,11}, {7,8,11}

9 11 12x x x c   - {5,6,10}, {5,7,10}, {5,8,10},
{6,7,10}, {6,8,10}, {7,8,10}

10 11 12x x x c   - {5,6,9}, {5,7,9}, {5,8,9}, {6,7,9},
{6,8,9}, {7,8,9}

5x b - {6,7,8}

6x b - {5,7,8}

7x b - {5,6,8}

8x b - {5,6,7}

Table 6. Maxterms and Superpolys of the E0 Keystream Generator

The author ended up with twelve superpolys/linear coefficients, depending

on the following unknown variables: 5 6 7 8 9 10 11 12, , , , , , ,x x x x x x x x .

Observation 6.2: The author was forced to use variables

5 6 7 8 9 10 11 12, , , , , , ,x x x x x x x x as unknowns since they are the only variables that

appear as variables in the superpolys. By implementing a chosen plaintext

attack, the attacker can determine their values.

 58

This is a useful observation, and in addition, the terms that appear in the 2nd and

3rd columns of the table do not have to be assumed known, but rather only need

to be manipulatable.

The program was executed several times, for testing purposes, on an Intel

Pentium 4 processor with a CPU of 2.80 GHz and 1GB of RAM, and the results

were produced in a mean time of 8.03 seconds, consuming 5.25 MB of memory.

2. Online Phase

Using the encryption function formed by the multivariable polynomial

(Appendix A) after the processing phase, the attacker obtained all the possible

linear co-factors (superpolys). From the specific encryption function of the

multivariable polynomial (obtained after the attacker masquerades as an

authorized user and gains access to the security protocol) the attacker will

eventually succeed in gathering twelve unique and independent equations:

 5 1x b a  , (6.1)

 6 2x b a  , (6.2)

 7 3x b a  , (6.3)

 8 4x b a  , (6.4)

 6 7 8 51x x x b a     , (6.5)

 5 7 8 61x x x b a     , (6.6)

 5 6 8 71x x x b a     , (6.7)

 5 6 7 81x x x b a     , (6.8)

 9 10 11 9x x x c a    , (6.9)

 9 10 12 10x x x c a    , (6.10)

 9 11 12 11x x x c a    , (6.11)

 10 11 12 12x x x c a    , (6.12)

 59

where {0,1}ia  and {1,...,12}i are considered known bits.

The above system of equations is an over-defined system of equations on

variables 5 6 7 8, , ,x x x x . Τhe solution we obtained is:

 5 1x a b  , (6.13)

 6 2x a b  , (6.14)

 7 3x a b  , (6.15)

 8 4x a b  , (6.16)

 9 9 10 11x a a a   , (6.17)

 10 9 10 12x a a a   , (6.18)

 11 9 11 12x a a a c    , (6.17)

 12 10 11 12x a a a c    , (6.18)

Remark. It is worth mentioning that even if not all these assumptions are

made, it is still possible to use this approach to find useful information about the

output bits of the LFSRs.

D. ANALYSIS OF THE RESULTS

Below is our main contribution in this thesis.

Theorem 6.3: If an attacker has unauthorized access to the encryption

protocol and can use the encryption machine as an oracle so that he can

manipulate some of the bits of the LFSRs, and by knowing the output bits of the

E0 keystream generator he succeeds in recovering the outputs of the LFSRs at

any clock tick.

Proof:

In section C of this chapter we proved that assuming that an attacker has

access to the variables of the four LFSRs at clock time t, t+1, t+2 and t+3 and the

output bit streams of E0 he can compute the output of the four LFSRs at clocks

ticks t+1 and t+2.

 60

By continuing this process in reverse order, it is easy to observe that one can

compute the output of the four LFSRs at clock ticks t and t+1, by only having

access and tweaking the variables and the output of E0 at clock tick t-1.

Taking a step back in time at another one clock, an attacker may explicitly find

that for the output of the LFSRs at clocks t, t-1 he only has to have further access

and tweak the variables and the output bits of E0 at clock t-2, and so on.

The theorem is proved. ■

Further knowledge about the insight of E0 is needed to correlate the

output of the LFSRs and the encryption key placed in E0. A difficulty one may

have in completely revealing the encryption key is that in accordance with Lu and

Vaudenay in [1], the E0 keystream generator produces limited segments of

keystream and after 2745 bits, the generator is reinitialized. However, this is not

explicitly stated in the Bluetooth core specifications document.

E. COMPLEXITY

The complexity in this section is measured in operations steps.

1. Preprocessing Phase

Let d be the degree of the encryption function f and n be the number of

variables of f. During the preprocessing phase, an attacker is trying to find as

many maxterms as possible. From this phase, an attacker may obtain n+1 output

bits from the LFSRs and some constant terms. The amount of work needed,

based on Zhang et al. in [5], is

1(1)2dn n 

The attacker also needs to compute the inverse of the matrix of linear relations

matrix. This requires approximately 3n operations and as a result, an upper bound

from this phase is:

1 3(1)2dn n n 

 61

2. Online Phase

For the online phase, where one needs to solve the system of linear

equations implementing a chosen plaintext attack, 12dn  evaluations of the E0

encryption function are needed, and the matrix multiplication which takes

2n operations needs to be performed. Again, by drawing on the analysis by

Zhang et al. [5], the complexity is of the following form:

1 22dn n 

Therefore, the overall complexity from both phases is:

1 3 1 2

2 1 1 3 2

(1)2 2

2 2 2

d d

d d

n n n n n

n n n n

 

 

    

   (6.19)

which is equivalent to 2 1 3(2)dO n n  .

In the case of Bluetooth, with 1 2 3 4 128n n n n n     (where 1n is the length of

the first LFSR, 2n is the length of the second LFSR, and so on) and d=4, we

determine that the attack on E0 requires 21.12246656 2 bit operations.

The number of operations needed for the computational process is considerable

less than of similar algebraic attack (54.512 bit operations needed [3]) and

correlation attack (372 bit operations needed [2]) types, which we described in

Chapter III. However, our cube-type attack is limited to the LFSRs’ output at any

clock tick.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

VII. CONCLUSION

We can only see a short distance ahead, but we can see plenty
there that needs to be done.

Alan Turing (1912–1954)

A. CONTRIBUTION

The main contribution of this thesis is as follows:

If an attacker has unauthorized access to the encryption protocol, the

attacker can use the encryption machine as an oracle so that he can manipulate

some of the bits of the LFSRs, and knows the output bits of the E0 keystream

generator, he can find the outputs of the individual LFSRs at any clock tick.

In this study, we investigated the current types of attacks, like correlation

and algebraic attacks, used in wireless systems. He focused on a new

(introduced in 2008) and promising type of algebraic attack, namely the cube

attack. We implemented the cube attack in a wireless system, namely Bluetooth.

We modeled the encryption function of E0 and automated the process of the

cube attack on E0. This included the factorization process (preprocessing phase)

where an attacker finds as many maxterms as possible. In the actual attacking

phase, the attacker solves the system of linear equations through a chosen

plaintext attack and computes useful information about the cryptosystem. The

number of operations needed for the computational process is of order 21.12 bit

operations and is considerably less than that of similar algebraic types of attacks,

but is limited in finding the output of the LFSRs at any clock cycle.

A useful observation is the following. We have all these different types of

attackers. Regardless of whether the attacker is a blackhat or greyhat or a

whitehat hacker, a sufficient level of sophistication is required for the attacker to

succeed on the implementation of the cube-type attack. A mixture of man-in-the-

middle attack and a chosen plaintext attack, knowledge of the encryption function

 64

of the target machine, and knowledge of the encryption protocol that is in use,

comes to take place, thus increasing the difficulty of the attack.

B. FUTURE DIRECTIONS

Further studies may improve many aspects of this thesis. The most

important question that needs to be answered is to determine how an attacker

can recover the encryption key of E0 after learning the output bits of every LFSR

that this study provides. Further investigation of the structure of E0 given in [28]

is required to correlate the internal, initial state of the LFSRs, like the pure key,

corresponding address, random number and the clocking bits that feed into the

LFSRs during their initialization phase, and the output bits per clock tick.

Building on these results, the next stage of research is to validate our

integration of the cube-type attack into the Bluetooth encryption protocol. As

demonstrated in this research as well as other research, one needs to be able to

understand and formally evaluate the strengths of a given cryptosystem and be

able to evaluate the implementation of the cryptosystem to ensure that there are

no flaws in the application of the cryptosystem. The cryptosystem and the

protocol it uses may be good, but if poorly implemented they will most likely be

untrustworthy.

Given the ubiquity of Wi-Fi and emerging adoption of Wi-Max, it is evident

that more work needs to be done to understand the trustworthiness of wireless

systems in terms of the strength of the underlying encryption protocols. These

systems use different encryption algorithms and different ciphers than E0. One

could follow our steps to implement the cube-type attack, like modeling the

encryption function of these systems, and then execute the preprocessing phase

and online phase and observe how effective this attack may be.

 65

APPENDIX A. ENCRYPTION FUNCTION OF E0 IN FULL
EXPANSION

From Equation (5.31), after doing the algebraic multiplication and addition, we

end up with the detailed encryption function. We did not use any tool to gain the

result, since the polynomial was not of high degree and the number of variables

was manageable.

5 6 5 6 5 6 5 6

5 7 5 7 5 7 5 7 5 8 5 8 5 8 5 8

6 7 6 7 6 7 6 7 6 8 6 8 6 8 6 8

7 8 7 8 7 8 7 8 5 6 7 8 5 5 5 5 5 5

6 6 6

0 a b c d x x a x x b x x c x x d

x x a x x b x x c x x d x x a x x b x x c x x d

x x a x x b x x c x x d x x a x x b x x c x x d

x x a x x b x x c x x d x x x x x a x c x d x ab x bc x bd

x a x c x

        

       

       
          

  6 6 6 7 7 7 7 7 7

8 8 8 8 8 8 1 2 3 4

1 5 1 6 1 7 1 8 2 5 2 6 2 7 2 8

3 5 3 6 3 7 3 8 4 5 4 6 4 7 4 8

1 5 1 6 1 7 1 8 2 5 2 6

d x ab x bc x bd x a x c x d x ab x bc x bd

x a x c x d x ab x bc x bd x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x b x x b x x b x x b x x b x x b x

         

         

       
       

      2 7 2 8

3 5 3 6 3 7 3 8 4 5 4 6 4 7 4 8

1 5 6 1 5 7 1 5 8 1 6 7 1 7 8 2 5 6 2 5 7 2 5 8 2 6 7 2 7 8

3 5 6 3 5 7 3 5 8 3 6 7 3 7 8 4 5 6 4 5 7 4 5 8 4 6 7 4 7 8

x b x x b

x x b x x b x x b x x b x x b x x b x x b x x b

x x

x x

x

 

       

         
         

9 10 11 12 9 5 9 6 9 7 9 8

10 5 10 6 10 7 10 8 11 5 11 6 11 7 11 8

12 5 12 6 12 7 12 8 9 5 9 6 9 7 9 8

10 5 10 6 10 7 10 8 11 5

b x b x b x b x x cb x x cb x x cb x x cb

x x cb x x cb x x cb x x cb x x cb x x cb x x cb x x cb

x x cb x x cb x x cb x x cb x x c x x c x x c x x c

x x c x x c x x c x x c x x c

       

       

       
    11 6 11 7 11 8 12 5 12 6 12 7 12 8

9 5 6 9 5 7 9 5 8 9 6 7 9 6 8 9 7 8

10 5 6 10 5 7 10 5 8 10 6 7 10 6 8 10 7 8

11 5 6 11 5 7 11 5 8 11 6 7 11 6 8 11

x x c x x c x x c x x c x x c x x c x x c

x x x c x x x c x x x c x x x c x x x c x x x c

x x x c x x x c x x x c x x x c x x x c x x x c

x x x c x x x c x x x c x x x c x x x c x

       

     

     

     7 8

12 5 6 12 5 7 12 5 8 12 6 7 12 6 8 12 7 8

9 10 9 11 9 12 10 11 10 12 11 12

9 10 5 9 10 6 9 10 7 9 10 8 9 11 5 9 11 6 9 11 7 9 11 8

9 12 5 9 12 6 9 12 7 9 12 8 10 1

x x c

x x x c x x x c x x x c x x x c x x x c x x x c

x x x x x x x x x x x x

x x

x x x x x x x x x x x x x x


     

     

       
    1 5 10 11 6 10 11 7 10 11 8x x x x x x x x x x   

 66

10 12 5 10 12 6 10 12 7 10 12 8 11 12 5 11 12 6 11 12 7 11 12 8

9 10 5 9 10 6 9 10 7 9 10 8 9 11 5 9 11 6 9 11 7 9 11 8

9 12 5 9 12 6 9 12 7 9 12 8 10 11 5 10 11 6

x x

x x x b x x x b x x x b x x x b x x x b x x x b x x x b x x x b

x x x b x x x b x x x b x x x b x x x b x x x b

       

       
      10 11 7 10 11 8

10 12 5 10 12 6 10 12 7 10 12 8 11 12 5 11 12 6 11 12 7 11 12 8

9 10 5 6 9 10 5 7 9 10 5 8 9 10 6 7 9 10 6 8 9 10 7 8

9 11 5 6 9 11 5 7 9 11 5 8 9 11 6 7

(

x x x b x x x b

x x x b x x x b x x x b x x x b x x x b x x x b x x x b x x x b

x x

x x x x x x x x x x x x x x x x

 

       

     

   9 11 6 8 9 11 7 8

9 12 5 6 9 12 5 7 9 12 5 8 9 12 6 7 9 12 6 8 9 12 7 8

10 11 5 6 10 11 5 7 10 11 5 8 10 11 6 7 10 11 6 8 10 11 7 8

10 12 5 6 10 12 5 7 10 12 5 8 10 12 6 7 10 12 6

x x x x x x x x

x x

x x

x x x x x x x x x x x x x x x x x x x x

  

     

     

    8 10 12 7 8

11 12 5 6 11 12 5 7 11 12 5 8 11 12 6 7 11 12 6 8 11 12 7 8

13 14 15 16 13 5 13 6 13 7 13 8 14 5 14 6 14 7 14 8

15 5 15 6 15 7 15 8 16 5 16 6 16 7 16 8 13 5

)

x x x x

x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x b x

 

     

           

         13 6

13 7 13 8 14 5 14 6 14 7 14 8 15 5 15 6 15 7 15 8

16 5 16 6 16 7 16 8 13 5 6 13 5 7 13 5 8 13 6 7 13 6 8 13 7 8

14 5 6 14 5 7 14 5 8 14 6 7 14 6 8 14 7 8

x b

x x b x x b x x b x x b x x b x x b x x b x x b x x b x x b

x x b x x b x x b x x b x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x



         

         

     

15 5 6 15 5 7 15 5 8 15 6 7 15 6 8 15 7 8

16 5 6 16 5 7 16 5 8 16 6 7 16 6 8 16 7 8

5 6 7 5 6 8 5 7 8 6 7 8 5 6 5 7 5 8

6 7 6 8 7 8 5 6 7 8

x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x

x x x b x x x b x x x b x x x b x x x x x x

x x x x x x x x x x

     

     

      

     

Note: Glossary of E0 keystream generator is provided in Appendix D.

 ■

 67

APPENDIX B. MAPLE 12

Working in the Maple 12 environment and after running the detailed

program, we found twelve superpolys, including the unknown variables of the

four LFSRs for two consecutive clock times. The program was executed several

times for testing purposes on an Intel Pentium 4 processor with a CPU of 2.80

GHz and 1 GB of RAM, and the results were produced in a mean time of 8.03

seconds, consuming 5.25 MB of memory.

The structure of the program is simple. Using methods prod2 and prod3,

we take the integers that represent the variables of the encryption function and

concatenate them to create products of variables. The part method takes as an

input any product of variables and returns its remainder and the cofactor

(superpoly). The ptab method stores the results in a table. Then we iterate

through the table and output every unique linear, nonconstant co-factor and their

corresponding products (maxterms).

In order to run this program one has to open a new worksheet in the

Maple 12 environment and copy every paragraph that starts with the symbol “ >”

and ends with symbol “;” of the following Maple code along with its contents and

paste it to the worksheet. Then he or she has to press symbol “!!!” from the

taskbar to compile the code and continually do this process up to the last line of

code. Comments starting with the symbol “//” must not be entered in the

worksheet as it will cause an error.

MAPLE CODE

// The encryption function of E0 in Algebraic Normal Form in Maple syntax

> anf := a + b + c + d + X5*X6*a + X5*X6*b + X5*X6*c +
X5*X6*d + X5*X7*a + X5*X7*b + X5*X7*c + X5*X7*d + X5*X8*a +
X5*X8*b + X5*X8*c + X5*X8*d + X6*X7*a + X6*X7*b + X6*X7*c +
X6*X7*d + X6*X8*a + X6*X8*b + X6*X8*c + X6*X8*d + X7*X8*a +
X7*X8*b + X7*X8*c + X7*X8*d + X5*X6*X7*X8 + X5*a + X5*c +
X5*d + X5*a*b + X5*b*c + X5*b*d + X6*a + X6*c + X6*d +
X6*a*b + X6*b*c + X6*b*d + X7*a + X7*c + X7*d + X7*a*b +
X7*b*c + X7*b*d + X8*a + X8*c + X8*d + X8*a*b + X8*b*c +

 68

X8*b*d + X1 + X2 + X3 + X4 + X1*X5 + X1*X6 + X1*X7 + X1*X8
+ X2*X5 + X2*X6 + X2*X7 + X2*X8 + X3*X5 + X3*X6 + X3*X7 +
X3*X8 + X4*X5 + X4*X6 + X4*X7 + X4*X8
+ X1*X5*b + X1*X6*b + X1*X7*b + X1*X8*b + X2*X5*b + X2*X6*b
+ X2*X7*b + X2*X8*b + X3*X5*b + X3*X6*b + X3*X7*b + X3*X8*b
+ X4*X5*b + X4*X6*b + X4*X7*b + X4*X8*b + X1*X5*X6 +
X1*X5*X7 + X1*X5*X8 + X1*X6*X7 + X1*X6*X8 + X1*X7*X8 +
X2*X5*X6 + X2*X5*X7 + X2*X5*X8 + X2*X6*X7 + X2*X6*X8 +
X2*X7*X8 + X3*X5*X6 + X3*X5*X7 + X3*X5*X8 + X3*X6*X7 +
X3*X6*X8 + X3*X7*X8 + X4*X5*X6 + X4*X5*X7 + X4*X5*X8 +
X4*X6*X7 + X4*X6*X8 + X4*X7*X8 + X9*b + X10*b + X11*b +
X12*b + X9*X5*c + X9*X6*c + X9*X7*c + X9*X8*c + X10*X5*c +
X10*X6*c + X10*X7*c + X10*X8*c + X11*X5*c + X11*X6*c +
X11*X7*c + X11*X8*c + X12*X5*c + X12*X6*c +
X12*X7*c + X12*X8*c + X9*X5*c*b + X9*X6*c*b + X9*X7*c*b +
X9*X8*c*b + X10*X5*c*b + X10*X6*c*b + X10*X7*c*b +
X10*X8*c*b + X11*X5*c*b + X11*X6*c*b + X11*X7*c*b +
X11*X8*c*b + X12*X5*c*b + X12*X6*c*b + X12*X7*c*b +
X12*X8*c*b + X9*X5*X6*c + X9*X5*X7*c + X9*X5*X8*c +
X9*X6*X7*c + X9*X6*X8*c + X9*X7*X8*c + X10*X5*X6*c +
X10*X5*X7*c + X10*X5*X8*c + X10*X6*X7*c + X10*X6*X8*c +
X10*X7*X8*c + X11*X5*X6*c + X11*X5*X7*c + X11*X5*X8*c +
X11*X6*X7*c + X11*X6*X8*c + X11*X7*X8*c + X12*X5*X6*c +
X12*X5*X7*c + X12*X5*X8*c + X12*X6*X7*c + X12*X6*X8*c +
X12*X7*X8*c + X9*X10 + X9*X11 + X9*X12 + X10*X11 +
X10*X12 + X11*X12 + X9*X10*X5 + X9*X10*X6 + X9*X10*X7 +
X9*X10*X8 + X9*X11*X5 + X9*X11*X6 + X9*X11*X7 + X9*X11*X8 +
X9*X12*X5 + X9*X12*X6 + X9*X12*X7 + X9*X12*X8 + X10*X11*X5
+ X10*X11*X6 + X10*X11*X7 + X10*X11*X8 + X10*X12*X5 +
X10*X12*X6 + X10*X12*X7 + X10*X12*X8 + X11*X12*X5 +
X11*X12*X6 + X11*X12*X7 + X11*X12*X8 + X9*X10*X5*b +
X9*X10*X6*b + X9*X10*X7*b + X9*X10*X8*b + X9*X11*X5*b +
X9*X11*X6*b + X9*X11*X7*b + X9*X11*X8*b + X9*X12*X5*b +
X9*X12*X6*b + X9*X12*X7*b + X9*X12*X8*b + X10*X11*X5*b +
X10*X11*X6*b + X10*X11*X7*b + X10*X11*X8*b + X10*X12*X5*b +
X10*X12*X6*b + X10*X12*X7*b + X10*X12*X8*b + X11*X12*X5*b +
X11*X12*X6*b + X11*X12*X7*b + X11*X12*X8*b + X9*X10*X5*X6 +
X9*X10*X5*X7 + X9*X10*X5*X8 + X9*X10*X6*X7 + X9*X10*X6*X8 +
X9*X10*X7*X8 + X9*X11*X5*X6 + X9*X11*X5*X7 + X9*X11*X5*X8 +
X9*X11*X6*X7 + X9*X11*X6*X8 + X9*X11*X7*X8 + X9*X12*X5*X6 +
X9*X12*X5*X7 + X9*X12*X5*X8 + X9*X12*X6*X7 + X9*X12*X6*X8 +
X9*X12*X7*X8 + X10*X11*X5*X6 + X10*X11*X5*X7 +
X10*X11*X5*X8 + X10*X11*X6*X7 + X10*X11*X6*X8 +
X10*X11*X7*X8 + X10*X12*X5*X6 + X10*X12*X5*X7 +
X10*X12*X5*X8 + X10*X12*X6*X7 + X10*X12*X6*X8 +

 69

X10*X12*X7*X8 + X11*X12*X5*X6 + X11*X12*X5*X7 +
X11*X12*X5*X8 + X11*X12*X6*X7 + X11*X12*X6*X8 +
X11*X12*X7*X8 + X13 + X14 + X15 + X16 + X13*X5 + X13*X6 +
X13*X7 + X13*X8 + X14*X5 + X14*X6 + X14*X7 + X14*X8 +
X15*X5 + X15*X6 + X15*X7 + X15*X8 + X16*X5 + X16*X6 +
X16*X7 + X16*X8 + X13*X5*b + X13*X6*b + X13*X7*b
+ X13*X8*b + X14*X5*b + X14*X6*b + X14*X7*b + X14*X8*b +
X15*X5*b + X15*X6*b + X15*X7*b + X15*X8*b + X16*X5*b +
X16*X6*b + X16*X7*b + X16*X8*b + X13*X5*X6 +
X13*X5*X7 + X13*X5*X8 + X13*X6*X7 + X13*X6*X8 + X13*X7*X8 +
X14*X5*X6 + X14*X5*X7 + X14*X5*X8 + X14*X6*X7 + X14*X6*X8 +
X14*X7*X8 + X15*X5*X6 +
X15*X5*X7 + X15*X5*X8 + X15*X6*X7 + X15*X6*X8 + X15*X7*X8 +
X16*X5*X6 + X16*X5*X7 + X16*X5*X8 + X16*X6*X7 + X16*X6*X8 +
X16*X7*X8 + X5*X6*X7*b + X5*X6*X8*b + X5*X7*X8*b +
X6*X7*X8*b + X5*X6 + X5*X7 + X5*X8 + X6*X7 + X6*X8 +
X7*X8 + X5 + X6 + X7 + X8;

// prod2 & prod3 take integers and return a product of those X variables
> prod2 := (n,m) -> cat(X,n) * cat(X,m);

> prod3 := (n,m,o) -> cat(X,n) * cat(X,m) * cat(X,o);

// parts takes a product p and returns a list of 2 parts: remainder and cofactor
> parts := proc(p) global anf; local l, z, t;
l := coeffs(algsubs(p = z, anf), z, 't');
if nops([l]) = 1 then [l,0];
else if t[1] = 1 then [l];
else [l[2], l[1]];
end if; end if; end proc;

// set up table "ptab" of these parts, indexed by the integers
> ptab := table();

> for i to 15 do for j from i+1 to 16 do
ptab[i,j] := parts(prod2(i,j)) ;
end do; end do;
> for i to 14 do for j from i+1 to 15 do for k from j+1 to
16 do
ptab[i,j,k] := parts(prod3(i,j,k)) ;
end do; end do; end do;
> degree(%);
> degree(%);
> for i in indices(ptab) do
if (degree(ptab[op(i)][2]) = 1) then

 70

print(i);print(ptab[op(i)][2]);print(ptab[op(i)][1]); end
if; end do;
> whattype(indices(ptab));
> linfac := select(i -> (degree(ptab[op(i)][2]) = 1),
[indices(ptab)]):
> nops(linfac);

> ptab[op(linfac[1])][2];

> sort([seq(ptab[op(i)][2], i in linfac)]);

> linfacs := convert(%,set);

> linfacs := convert(linfacs, list);

> nops(linfacs);
> for fac in linfacs do
print(fac);
for i in linfac do
if (ptab[op(i)][2] = fac) then print(i); end if;
end do;
end do;

Note: In order for one to add comments to the worksheet from the Insert menu of

the taskbar, one has to select Paragraph, and then select Before Cursor or After

Cursor. A new paragraph is inserted and the cursor is moved to the new blank

line. From there, one can enter the paragraph.

 71

APPENDIX C. PROGRAM OUTPUT

Maple 12 works on Windows (2000, 2003, XP, Vista), Macintosh, UNIX,

Linux and Solaris environments. The developers’ system recommendations

include the following:

 CPU: AMD X86_64/ 1 GHz/Intel Xeon/ Intel 64

 RAM: 512MB (at least)

 Hard disk: 1 GB

The program outlined in Appendix B was executed on an Intel Pentium 4

processor with a CPU of 2.80 GHz and 1 GB of RAM in a Windows XP

environment. The output of the program is in the following paragraph where the

linear term without any bracket represents the superpoly and the terms inside the

brackets represent the corresponding index of the variables of the corresponding

superpoly. For example, the superpoly 5x b has only one maxterm, 6 7 8x x x ,

whereas the superpoly 9 11 12x x x c   has as maxterms the terms

5 6 10, 6 7 10, 5 7 10, 6 8 10, 5 8 10, 7 8 10.x x x x x x x x x x x x x x x x x x

OUTPUT

 72

 73

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

APPENDIX D. GLOSSARY OF BLUETOOTH KEY STREAM
GENERATOR E0

cK ……………………………………………………………….. Encryption Key

COF …………………………………………………Encryption Offset Number

OR…………………………………………………………………….Bitwise OR

XOR……………………………………………………….Bitwise Exclusive OR

LSFR…………………………………………..Linear Feedback Shift Register

CLK……………………………………………………………Master Clock Bits

i
tx ……………………………………….Output bit of the iLFSR at clock-time t

4

1

i
t t

i

y x


  ………Summation outcome (integer) from the output bits of the

four LFSRs at clock-time t

tz ………………………………keystream bit produced by E0 at clock-time t

1tz  …………………………..keystream bit produced by E0 at clock-time t+1

2tz  ………………………… keystream bit produced by E0 at clock-time t+2

3tz  …………………………..keystream bit produced by E0 at clock-time t+3

tc ……………………………...………………Four Memory bits at clock-time t

1
tc ………………………...Current two-bit block of Memory bit at clock-time t

0
tc …………………………...…Two-bit block of Memory bits at clock-time t-1

ts ………………………………………………………………Two-bit sequence

1
ts ………………………………………...........First bit of the two-bit sequence

 76

0
ts ……………………………..……………Second bit of the two-bit sequence

tq ……….First bit of the current two-bit block of Memory bits at clock time t

tp …...Second bit of the current two-bit block of Memory bits at clock time t

1tq  …………….First bit of the two-bit block of Memory bits at clock time t-1

1tp  ………Second bit of the two-bit block of Memory bits at clock time t-1

i
t ………………………the i-th elementary symmetric polynomial in i

tx

1 2 3 4, , ,x x x x ...The outputs of the 1st,…,4th LFSR at clock-time t respectively.

5 6 7 8, , ,x x x x ...The outputs of the 1st,…,4th LFSR at clock-time t+1

respectively.

9 10 11 12, , ,x x x x ...The outputs of the 1st,…,4th LFSR at clock-time t+2

respectively.

13 14 15 16, , ,x x x x ...The outputs of the 1st,…,4th LFSR at clock-time t+3

respectively.

a……………………………keystream bit produced by E0 at clock-time t, tz

b………………………keystream bit produced by E0 at clock-time t+1, 1tz 

c………………………keystream bit produced by E0 at clock-time t+2, 2tz 

d………………………..keystream bit produced by E0 at clock-time t+3, 3tz 

 77

LIST OF REFERENCES

[1] Y. Lu and S. Vaudenay, “Faster correlation attack on Bluetooth keystream

generator E0,” Lecture Notes in Computer Science, vol. 3152, pp. 407–

425, December 2004.

 [2] Y. Lu, W. Meier, and S. Vaudenay, “The conditional correlation attack: A

practical attack on Bluetooth encryption,” Lecture Notes in Computer

Science, vol. 3621, pp. 97–117, August 2005.

[3] F. Armknecht, July 24–28, 2004, “An algebraic attack on the Bluetooth key

stream generator,” Minrank Foundation, tutorial presented at ECCOMAS,

http://th.informatik.unimannheim.de/people/armknecht/Armknecht_Eccom

as.pdf (accessed February 3, 2009).

[4] I. Dinur and A. Shamir, January 26, 2009, “Cube attacks on tweakable

black box polynomials, Cryptology ePrint Archive,

http://eprint.iacr.org/2008/385 (accessed January 7, 2009).

[5] A. Zhang, C.-W. Lim, K. Khoo, W. Lei, and J. Pieprzyk, September 2,

2009, “Extensions of the cube attack on low degree annihilators,”

Cryptology ePrint Archive, http://eprint.iacr.org/2009/049, to appear in

proceedings of Cryptology and Network Security – CANS 2009 , Lecture

Notes in Computer Science, Springer–Verlag, 2009. (accessed

September 15, 2009).

[6] R. Needham and M. Schroeder, “Using encryption for authentication in

large networks of computers,” Communications of the ACM, vol. 21, no.

12, pp. 993–999, December 1978.

[7] B. Giampaolo, “Formal Correctness of Security Protocols,” Springer, April

2007, p. 2.

 78

[8] D. R. Stinson, “Cryptography Theory and Practice,” Chapman & Hall/CRC,

3rd Edition, 2006, p.1.

[9] R. A. Mollin, “Codes: The guide to secrecy from ancient to modern time,”

CRC Press, May 2005, pp. 379–393.

[10] A. D. Rublin, “White-hat security arsenal: tackling the threats,” Addison

Wesley, 2001, p. 227–253.

[11] W. Cha, G. Wang, and G. Cho, “A Pai-Wise key Agreement Scheme,”

Lecture Notes in Computer Science, vol. 3036, pp. 648–651, May 2004.

[12] J. B. Farleigh, “A First Course in Abstract Algebra,” Addison Wesley, 7th

Edition, 2003, pp. 274–275.

[13] T. W. Cusick and P. Stanica, “Cryptographic Boolean functions and

applications,” Academic Press in-Elsevier, March 2009, pp. 5–24.

[14] K. H. Rosen, “Discrete mathematics and its applications,” McGraw Hill, 6th

Edition, 2007, p. 116.

[15] T. Siegenthaler, “Correlation-immunity of nonlinear combining functions for

cryptographic applications,” IEEE Transactions on Information theory, Vol.

IT-30, No. 5, 1984, pp. 776–780.

[16] N. Courtois and W. Meier, “Algebraic Attacks on Stream Ciphers with

Linear Feedback,” Lecture Notes in Computer Science, Springer

Berlin/Heidelberg, vol. 2729, pp. 176–194, October 2003.

[17] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient Algorithms for

Solving an Overdifined Systems of Multivariate Polynomial Equations,”

Advances in Cryptology–Eurocrypt 2000, Lecture Notes in Computer

Science, Springer, vol. 1807, pp. 392–407, Springer, January 2000.

 79

[18] N. Coutrois and W. Meier, “Algebraic Attacks on Stream Ciphers with

Linear Feedback,” Eurocrypt 2003, Lecture Notes in Computer Science,

Springer, vol. 2656, pp. 345–359, Springer, Extended version of the paper

at http://www.nicolascourtois.me.uk/ , September 4, 2008, (accessed April

10, 2009).

[19] W. Meier, E. Pasalic, and C. Carlet, “Algebraic Attacks and Decomposition

of Boolean functions,” Lecture Notes in Computer Science, vol. 3027,

Advances in Cryptology–Eurocrypt 2004, pp. 474–471, April 2004.

[20] M.R. Garey and D.S. Johnson, “Computers and Intractability: A guide to

the Theory of NP-Completeness,” W.H. Freeman, January 1979.

[21] B. Buchberger, “Gröbner Bases and Applications,” B. Buchberger, F.

Winkler (eds.), London Mathematical Society Lecture Notes Series 251 ,

Cambridge University Press, March 1998, pp. 535–545.

[22] F. Armknecht and M. Krause, “Algebraic attacks on combiners with

memory,” Adv. in Cryptology – Crypto 2003, Lecture Notes in Computer

Science 2729, pp. 162–175, October 2003.

[23] F. Armknecht, “Algebraic Attacks on Stream Ciphers,” Proc. European

Congress on Computational Methods in Applied Sciences and

Engineering, 2004,

http://www.mit.jyu.fi/eccomas2004/proceedings/pdf/509.pdf (accessed

February 3, 2009).

[24] S. Fischer, S. Khazaei, and W. Meier, “Chosen IV Statistical Analysis for

Key Recovery Attacks on Stream Ciphers,” Progress in Cryptology –

AFRICACRYPT 2008, Lecture Notes in Computer Science 5023, pp. 236–

245, May 2008.

[25] A. Joux and F. Muller, “A chosen IV Attack Against Turing,” Selected

areas in Cryptography, Lecture Notes in Computer Science 3006, pp.

194–207, May 2004.

 80

[26] S. O. Neil, September 23, 2007, “Algebraic Structure Defectoscopy,”

Cryptology ePrint Archive, Report 2007/738, http://eprint.iacr.org/2007/378

(accessed March 15, 2009).

[27] S. Fischer, S. Khazaei, and W. Meier, “Reduced Complexity Attacks on

the Alternating Step Generator,” Selected areas in Cryptography, Lecture

Notes in Computer Science 4876, pp. 1–16, December 2007.

[28] Bluetooth Specification Version 3.0 High Speed Vol2, Bluetooth SIG,

adopted 21 April 2009, pp. 934–976, http://www.bluetooth.com/Bluetooth/

Technology/Basics.htm (accessed April 29, 2009).

[29] Maplesoft, a division of Waterloo Maple Inc. 2009,

http://www.maplesoft.com/documentation_center/maple12/Install.html#Wi

ndows_ System_Requirements, (accessed, April 2, 2009).

[30] Maple 12 User Manual, Maplesoft, a division of Waterloo Maple Inc.

1996–2008. pp. xiii,–xiv, http://www.maplesoft.com/ view. aspx? sid=5883,

(accessed, April 4, 2009).

 81

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. George Dinolt
Department of Computer Science
Monterey, California

4. Dr. James Bret Michael
Department of Computer Science
Monterey, California

5. Dr. Pantelimon Stanica
Department of Applied Mathematics
Monterey, California

6. Dr. David Canright
Department of Applied Mathematics
Monterey, California

7. Dr. Peter J. Denning
Chairman, Department of Computer Science
Monterey, California

8. Dr. Carlos F. Borges
Chairman, Department of Applied Mathematics
Monterey, California

9. Hellenic Navy General Staff

Athens, Greece

10. Hellenic Naval Academy
 Piraeus, Greece

11. LT Nikolaos Petrakos

Naval Postgraduate School
 Monterey, California

